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MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

Yu. M. Svirezhev, Ye, Ya. Yelizarov

INTRODUCTION /5*

An association of live organisms together with their-habitat

which is restricted by certain natural boundaries and which has

one or several stable states is usually called a biogeocoenosis

(BGC).. The BGC concept was introduced for the first time in the

work of V. N. Sukhachev. Today biogeocoenology refers to those

new advanced directions in contemporary natural science that de-

veloped through the contact of many sciences, which are of great
theoretical importance and are the scientific basis for the de-

velopment of many branches of the national economy and the ration-

al use of natural resources.

A deep and multifaceted study of the various interrelation-

ships and interdependences which determine the life and the pro-

ductivity of the BGC which make it possible to control and perfect

them, is not possible without using exact quantitative methods.

Recently mathematical planning and control methods have been used

widely in industry and economics, in areas which are intimately

related to human work activity. The concepts "optimal schedule,"
"optimal policy" and other concepts have come into wide use.

When industrial processes and economic interrelations are planned,

an attempt is made to take into account the interrelation among

many factors, and to select not only a good schedule for the oper-

ations but the best schedule which is "optimal" with respect to

some criterion. Unfortunately, only in the last few years man

became aware of the necessity to model his interrelations with

nature in an optimal manner, since natural resources are not "in-

exhaustible."

We will give an interesting example. It is known that the

number of industries in any population of live organisms whose

size is bounded above by a certain limiting factor (the amount of

food, the region.where it dwells, etc.) varies in accordance with

the logistic law (Fig. 1). The limiting factor has no particular

effect on the initial segment (ab) of the curve, and no matter how

bad the effect of the population on its environment (excluding, of

course, very extreme cases), this effect is so small that it has

practically no influence on the population limit and on the envi-

ronment. The picture changes considerably when the population /6

lies on the segment of the curve where the rate of growth attains

its maximum value (the segment bc). Here the effect of the limit-

ing factor is already felt, the population has already a consider-

able effect on the environment, and, hence, the reverse effect is

also conslderable. The result of a "bad" effect of the population

on tha envi:"-nment is, as a rule, a reduced population size limit.

*Numbers in t.,e margin indicate pagination in the foreign. text.



And now, along with Fig. 1 we will show the graph according
to which the earth's population size changes over time. It can
be seen from Fig. 2 that we have already entered the second growth
stage, and that the problem of reducing the "harmful" effect of
man on his environment is a pressing problem which cannot be post-
poned. The majority of natural BGC are, at the present time,
systems which have already been formed, which are in a state of
dynamic equilibrium. Man, as a result of his economic activity
interferes with natural BGC and disturbs the existing equilibrium,
often by far not in the most favorable direction, or he tries to
create certain artificial biogeocoenotic systems. Therefore, the
question arises naturally of how to act on the BGC in a controlled
manner, so that the action is optimal with respect to some cri-
terion.

One of the possible criteria which can be used is the maxim-
ization of theyield, i.e., the maximum biological productivity
of coenoses with additional constraints which make it possible to
preserve the BGC itself. From this point of view,our book is de-
voted to the application of the mathematical methods of optimiza-
tion theory which have already been developed sufficiently well
to objects and models which for all practical purposes were not
studied using these methods, namely to biogeocoenoses and their
quantitative models.

In 1968 the book "Ecology and Resource Management: A Quanti-
tative Approach," by Kenneth E. F. Watt was published in the USA. 1 /7
A large part of this book discusses the consequences of man's in-
terference in natural associations. After this the author dis-
cusses various quantitative models of these processes (mainly
models of the Volterra type and empirical models). As a matter
of fact, the system, or even science developed by him, can be called
ecology engineering; and in our terminology, engineering or ap-
plied biogeocoenology. Given the generality of our objectives,
the approaches of Watt and those of the authors of this book dif-
fer to a considerable extent. Watt collected practically all
special methods and models which were used until now in the quan-
titative modeling of natural associations and the processes of
their use. Trying to introduce a certain unity into the discus-
sion, he uses widely a technique, which is usually called today
"the systems approach." The interesting chapter on the applica-
tion of an electronic digital computer to processing ecological
observation data stands somewhat apart.

Our book is several times smaller in scope, and naturally
also smaller in the number of topics discussed and less varied in
the methods used. However, it seems, to us that we gained in the
unity of the presentation, of course, at the expense of generality
clarity, and perhaps even interest.

1. Watt, Kenneth E. F., "Ecology and Resource Management: A
Quantitative A.pproach," N. Y., McGraw-Hill Book Co, 1964 450 pp
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The problem of modeling biological systems and their optimal
use has still another aspect which is connected with the creation
of an "earth" environment for man in space and on other planets.
The creation of permanent'scientific stations in space and on
planets in the solar system is a natural stage in the evolu-
tion of space travel, and contemporary trends give us reason to
believe that the implementation of this stage can begin in the
nearest decades. We point out, that according to the forecasts
of a number of NASA workers which were made at the symposium of the
American Astronautical Society in 1966, a permanent scientific base
will be erected on the moon in 1982-1985, and the erection of per-
manent scientific bases on Mars and even on Mercury and the Gall-
lean satellites of Jupiter are to be expected in 1990-2000. These
forecasts which were made in the period when work on the USA space
program was most intense and when it was most generously financed,
are apparently overly optimistic. However, there can be no doubt
that the characteristics of space rocket systems which will be
constructed within the next 10-20 years,in their weight and power
aspects will make it possible to carry out the projects which were
mentioned above.

One of the most important conditions for the successful devel-
opment and functioning of permanent stations is the development of
highly efficient and reliable life support systems. For stations
which are remote from earth and which are situated on natural oeles-
tial bodies, an important requirement is the high degree of their /8
autonomy, and consequently, a long operational time (T) of the
system. Provisionally an estimate for this time is T)103 days.
For such operational times when the crew is 10 people or more,
closed ecological systems have the greatest promise. It can also
be assumed that systems of the type mentioned above,can also be
used advantageously in large orbital observatories in:near space,
since a certain relaxation of the requirements on the autonomy of
the system will be compensated by greater requirements on its
power, due to the increased size of the crew.

Thus, the development of principles for creating sufficiently
powerful closed ecological systems, which we are fully justified
in calling artificial microcosms,is a rather important and topical
problem.

This problem can be solved in two ways: by simulating the
stable biogeocoenoses which exist in the earth's biosphere, and
by constructing entirely new types of biosystems using the basic
laws which govern the functioning of the biogeocoenoses and the
entire biosphere as a whole. However, in either of these two
cases an important role in the development will be played bymathe-
matical modeling, since the search for the optimum variants of the
structures of coenoses and methods by which they can be efficiently
controlled using full-scale experiments, is unrealistic both from
the standpoint of the costs and also from the standpoint of the

3



deadlines which must be met.

H 2

f 0 hours years

Fig. 1 Fig. 2

Fig. 1. Population growth (N) of yeast cells (Gauze, 1934)

Fig. 2. World population growth ("Figures for socialist and
capitalist countries," Moscow, IPL, 1966)
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Chap. I. QUANTITATIVE MODELS IN BIOGEOCOENOLOGY AND PROBLEMS OF

OPTIMAL YIELD

1. The Biogeocoenosis Concept. Biogeocoenosis and Ecological

System--Two Different Concepts

The biogeocoenosis concept was introduced forthe firsttime in, 
/9

the work of V. N. Sukachev (Sukachev, 1945, 1947, 1949, 1964,1966).

In historical perspective, biogeocoenosis (BGC) is an association

of organisms which adapt to one another and to their surrounding

environment in the evolutionary process and communicate with one

another and with the environment through various channels through

which mass, energy, and information flows circulate. The relations

among the organisms are either a direct or indirect consequence 
of

the struggle for survival and natural selection in the given en-

vironmental conditions. Until the appearance of the work of V. N.

Sukachev, the biocoenosis concept--an association of live organisms

--was widely used. However, it makes no sense to study some bio-

coenosis apart from the environment in which it exists. Further,

since any definition must be operational, rules must be given by

which the biological association under consideration can be

singled out. The first correct definition, biogeocoenosis, which

sensibly singles out a biosystem was given by V. N. Sukachev, who

pointed out the role of plant communities and landscape 
character-

istics in the formation of stable biological associations. We note

that many earlier biocoenological studies were in essence biogeo-

coenological. However, it was possible to operate with comparative-

ly precise definitions only after the work of V. N. Sukachev.

One of the main difficulties which arises in the formulation

of this type of borderline problems is the problem of terminology.

Recently in biological studies more and more attention was given

to a clear and contradiction-free formulation of basic concepts.

Therefore, we will use for the basic set of terms the concepts

which are widely used in biogeocoenology and ecology. However,

sometimes a situation will arise in which the basic term is either

toodiffuse or too broad. In such a case we will not discard the

term, we will only use it more formally and define it more pre-

cisely by introducing various types of constraints.

When we made our first attempts to study such problems, the

idea occurred to us to divide almost the entire availableliterature

on this problem into two large classes: the first class could be /10

characterized by using the word "biogeocoenosis" as the 
fundamental

concept, and the second by the phrase "ecological system." 
It

seemed that here we had a purely terminological issue, since

both these words denote the same concept.

5



Even more confusion was introduced by the fact that various
authors who use these words always shift even if only slightly the
meaning of the concepts which were defined. The fact which im-

mediately draws our attention when we study various biological
associations is that all members of the association are related
to one another by various types of relations, i.e., every associa-
tion has its own structure. The relations themselves in turn are

channels of a kind over which mass, energy and information flows
circulate. It is natural that when the initial concept was sought
which would define such associations, the definition "ecological
system" was adopted. Thus, "an ecological system" is a concept
which is related to the structure of the association, in particu-
lar, the trophic structure. Spatial limitations are not essential
for its definition.

When associations of organisms are studied it is necessary to
take into account their environment,which has an important effect
on the structure of the association. Between the organisms and
the abiotic factors in the environment in which they live,various
temperature, humidity, chemism,, etc., connections are formed.

And finally the functional system which includes the associ-
ation of live organisms and their environment is called an ecolog-
ical system (ecosystem), (Odum, 1963; Macfadyen, 1965, DuVigneaud,
Tang, 1968). The term "ecosystem" can be applied to biocoenoses
and their environments which differ considerably in size:

microecosystem (tree stump)
mesoecosystem (meadow or grove)
macroecosystem (ocean)

The unification of all ecological systems in the world leads to
the concept of the giant earth ecological system, i.e., the con-
cept of the biosphere.

When we single out an ecological system, the natural bounda-
ries are not important to us. The ecological systems which can be
studied are not only real existing stable associations, but any,
even unstable, associations which need not have any unified struc-
ture. In the final analysis we always speak about the study of
the formation, circulation, accumulation and transformation of
matter, energy and information in processes connected with the ac-
tivity of live organisms and their metabolism. No restrictions
are imposed on the principles used to select ecological systems.
Further, the size of the ecological system is unbounded above and
below. The .definition itself does not indicate in any way that the
ecological system which is chosen must describe,to some extent,a
real existing bounded natural system. Even though.this is implicit

6



in the requirement that the cycle be closed, nevertheless the

basic concept is difficult to apply to problems of our type /11

because of its excessive generality.

We will now pass on to the biogeocoenosis concept. It arose

out of the need to find somehow and isolate an elementary 
unit in

the biosphere, which could be subdivided into these units 
without

a remainder. In the definition given by N. V. Timofeyev-Resovskiy

and A. N. Tyuryukanov (Timofeyev-Resovskiy, 1961; Timofeyev-

Resovskiy, Tyuryukanov, 1966, 1967), it is said directly that a

BGC is a sector of the biosphere through which no esfmstial 
bio,

coenotic, geomorphological, hydrological, microclimatic and soil-

geochemical boundary passes. Thus, the entire giant system, the

earth's biosphere, is broken up into subsystems which are natur-

ally separated from one another. As in the case of an ecological

system,also here a certain system is singled out, 
about which it

can be said that the principles used in singling it out are deter-

mined by natural limitations. This allows us to hope that the

system studied has been singled out in the best possible way, 
and

that the number and intensity of the relations within the region

which was singled out are considerably larger than those between

this region and the surrounding space. And the inevitable aver-

aging of certain parameters of the system which takes place 
during

subsequent study and simplification, is carried out over a 
set

which is almost independent of the remaining sets, i.e., we have

a system which is almost isolated. Of course, we can only speak

about relative isolation, since the BGC themselves are unified

in higher order systems (for example, geochemical landscapes) up

to and including the biosphere.

One of the main characteristics of a BGC is the existence of

dynamic equilibrium states of this system, and 
it is often said

that we can only speak about a BGC when the system is in such 
a

state (Timofeyev-Resovskiy, 1964). On the other hand the concept

of an ecological system does not include the requirement of dy-

namic stability and the presence of equilibrium states. This

point of view received unexpected support from W. R. Ashby 
(Ash-

by, 1966), when he talks about self-organizing principles. 
We

quote his most characteristic statement: "Every isolated deter-

ministic dynamic system which obeys fixed laws creates 'organisms'

which are adapted to their 'surrounding environment.' The adap-

tation consists of a tendency toward equilibrium; it can be said,

that in the process, the system makes a selection." Equilibrium

in a simple system is usually trivial, but it can be very inter-

esting and instructive in a complex multicomponent system such as

a BGC. Notwithstanding the fact that equilibrium includes only a

small part of all states, in a large system,this part is suffi-

ciently large to ensure the necessary diversity. Suppose that the

transition to such equilibrium is rather long. We find out that

the existing states have the capacity to "survive" the changes

caused by the laws. We will break the system in equilibrium into

two parts, and we will call one part the "organism," or the

7



"association of organisms," or the "biocoenosis," and the other
part the "surrounding," or "abiotic environment." We then find
out that the "biocoenosis" is distinguished by its capacity to /12
survive despite the disturbances in the "surrounding environment,"
i.e., the entire BGC is stable as a whole. The degree with which
the entire system adapts to the environment, and the degree of
stability are only limited by the dimensions of the entire dynamic
system and by the time available to it to attain equilibrium.

Thus, BGC are dynamic systems which were isolated naturally
with relatively constant and deterministic laws,whose characteris-
tic time is sufficiently large. The systems must have one or sev-
eral stable states in which they "adapt" maximally to the sur-
rounding environment. The environment itself must be part of the
system as a whole.

And finally an applied aspect of this problem is..of great in-
terest to us. Since the BGC concept is based on real existing
natural associations which are separated in space, the results ob-
tained from the solution of applied problems based on this concept
can be interpreted easily and uniquely. The matter is somewhat
more complicated with ecological systems, since results obtained
for an ecological system are more difficult to "connect" with
some concrete natural association.

We note that recently these concepts have come closer to one
another: often by an ecological system is meant precisely a BGC,and often a BGC itself is called an ecological system. This cur-
ious process shows how the general concept of an ecological sys-
tem when it is concretely related to real existing objects no
longer signifies at all,after a certain time what it denoted when
it was introduced.

2. Quantitative Models of Biological Associations

The first attempts to describe quantitatively biological as-
sociations were made in the work of Lotka (Lotka, 1920, 1923,1925, 1932, 1934), Volterra (Volterra, 1926, .1928, 1931, 1935),
and Kostitzin (Kostitzin,.1937). These models were constructed
using the apparatus of differential equations. They took into
account propagation and mortality factors and trophic interactions
of one type or another.

For systems of the "predator-prey" type the trophic interac-
tions were based on the method of "encounters," a certain analogue
of collisions in kinetic gas theory, which assumes that the diet
of the "predator" is proportional to the product of the number of
the two types.

With the advent of electronic computers it was possible to
model directly complex structures which closely approximate real
BGC.

8



In the last years many articles appeared which were devoted

to setting up quantitative models for sufficiently complex biocoe-

noses and to problems of controlled action on them (Lyapunov, 1966; /13

Poletayev, 1966; Eman, 1966; Gil'derman, 1966; Gorstko, 1966, Gur-

finkel', 1967, and others).

A. A. Lyapunov emphasizes that a very useful theoretical way

of studying certain biological problems is mathematical-machine

modeling. Living nature as a whole is represented by it as a

hierarchially organized system of objects with various organiza-

tion levels. Every such object is split up into a number of ob-

jects on lower levels which are among themselves in a state of

energy, material and information exchange. If the types of inter-

actions among and within the individual classes of objects are

known, it is useful to use the method of mathematical modeling to

clarify the behavior of the system as a whole. In fact, taken as

a whole the Earth's biosphere consists of many subsystems which

are rather loosely connected (Vernadskiy 1926;Sukachev, 1945 1947,

1949; Timofeyev-Resovskiy, Tyuryukanov, 1966, 1967; Lyapunov,

Stebayev, 1964) and these subsystems themselves consist o:? still

smaller systems, which are again rich ininternal relations but

less rich in relations among themselves, etc. Speaking about the

possibility of controlling the biosphere, A. A. Lyapunov notes,

that the most suitable control object is a biogoecoenosis when it

is considered as an elementary unit of the biosphere.

For practical applications (planning the rational utilization

of natural arable land) the most important class of models is the

class of portrait models (Poletayev, 1966) which are constructed

with values of the parameters close to those which exist in nature.

However, the construction of such models is beset by considerable

difficulties because of a number of fundamental questions con-

nected with the interaction mechanisms among the components of the

biogeocoenosis,which is often a complex dynamic system.

Therefore, it is more sensible to build simplified models of the

search type for elementary situations within the confines of the

biogeocoenoses,which in turn are used for building complex 
models

of the portrait type.

Starting out with these assumptions,I.A.Poletayev constructed

search models of biogeocoenoses. In doing this he follows Vol-

terra and uses the apparatus of differential equations. By a com-

ponent of the biogeocoenosis he means any substance which 
is sim-

ple or complex in composition, and any type of energy which 
is

present and formed within the confines of the biogeocoenosis. Cer-

tain most essential BGC components are "critical" and are studied

in an existing BGC as "narrow places." They determine the con-

straints which must be satisfied in order that the BGC function

normally. Certain "types of activities" or "classes of activities"

of the BGC components (basal metabolism, reproduction, acquisition

of food, etc.) are also constraints. Thus the BGC dynamics (ac-

cording to Poletayev) are described by a system of differential

9



equations for its "critical" components and a set of Con- /14straints on the "types of activities."

Following the ideas of I. A. Poletayev, T. I. Eman (1966)
studied the dynamics of certain models of biogeocoenoses. Thecentral problem in these studies was the question of the presenceor absence of BGC equilibrium states and stable conditions whichdiffer little from these equilibrium states.

3. Types of Populations Models and the Optimum Catch
Problem

One of the simplest associationSof organisms is a population.
Historically it so happened that fish populations have beenstudied sufficiently well quantitatively, especially populationsof fish in fisheries, for which large amounts of statistical datawere available.

In a survey article devoted to methods of modeling mathe-matically the dynamics of populations of fish in fisheries, V. S.Ivlev (1961) distinguishes two types of models: greatly simpli-fied Thompson models (Thompson, 1937) and more sophisticated
models, which use the apparatus of differential equations. Mathe-matical models which use the apparatus of differential equationsin studies of fish populations were in turn classified by Gulland
(Gulland, 1962) as follows:

a) those which consider the population as a single whole,i.e., those which ignore the internal structure of the population.The Volterra (1931, 1935) and Gauze (1934) models can serve as ex-
amples;

b) those which consider separately growth and stocking pro-cesses, in age groups and mortalities. Examples' the Baranov model(Baranov, 1918), the Russel model (Russel, 1931) and the funda-mental model of Beverton and Holt, (1957);

c) those which take into account the dependence of thegrowth and mortality coefficients on the population density(Tanaka, 1960);

d) those which take into account the dependence of stocking
in age groups on the population density. The Ricker model isan example (Ricker, 1958).

The dynamics of fish populations deals with regulatory adap-tation designed to preserve the population. From the standpointof the structure of the system which is modeled, the presence ofadaptive characteristics denotes the presence of feedback loops inthis structure. The most suitable modeling method which theoreti-cally allows for an unlimited complexity of the model structure,is cybernetic modeling (Menshutkin, 1964), in which the population
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can be studied as some finite automaton.

It should be noted that all these models, which are set up to

solve problems dealing with the dynamics of the number of fish,

presuppose that the actual data which are obtained from fishery

statistics and special studies set up to study fishery catches

(age, size, sex composition of fish, etc.) and also by additional /15

tests and results obtained from specialized experiments (tagging,

quantitative count of ova and larvae, characterization 
of external

conditions, etc.) undergo mathematical treatment in one form

or another.

Ichthyology was one of the first fields to encounter the

-peoblem of the rational utilization of self-reproductive 
natural

resources. Already at the end of the 19th century it was noted

that the percentage of certain types of fish (sturgeon, giant stur-

geon, Caspian sturgeon, sterlet, pike-perch, carp, carp-bream,

Caspian roach) in the catches reduced steadily every 
year. For

ichthyologists this fact served as a stimulus to develop the

fishing rules (1897) which became the scientific basis for the

use of fish reserves.

In 1918 F. I. Baranov built a model which described the

dynamic number of fish in stock by assuming that 
the rate at which

the number of fish is reduced with age is proportional to their

number. Using a linear relation to describe the relation between

age and the length of the fish t = 1, and a cubic relation 
for the

relation between the weight and the length p = wt , he obtained

the following expression for the ichthyomass of the fishery stock:

p (L, k) = wNoQ (L, k),

where L is the initial fishery dimension of the fish, NO is the re-

cruitment, k is the general mortality coefficient, w is the propor-

tionality coefficient, and O(L,k) is a function which depends on

the catches.

Q (L, k)= e-kdl .

Representing the general mortality coefficient as the sum 
of the

natural and fishery mortality coefficients, Baranov determined the

size of the catch and was able to formulate the optimum catch prob-

lem. The Baranov model was improved and made more precise in the

work of Ricker (Ricker, 1958), Beverton and Holt (Beverton and Holt,

1957), Tanaka (Tanaka, 1957, 1960) and others. Beverton and Holt

made a study of the dependence of the catch, the ich'thyomass and

other population parameters on the fishing rate, the limiting

age of fish in the population, the natural mortality 
and growth

parameters.
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Thompson (Thompson, 1937), who studied the halibut in the
Pacific Ocean, built a stable fishery model. He showed by compu-
tations, that as the catching rate increases, the weight of the
catch first increases, and then having reached a maximum begins to
drop, i.e., Thompson reached the same conclusion about the optimum
catch as Baranov, without using the apparatus of differential
equations.

The analog modeling experiment of the dynamics of fish popula-
tions carried out by Doi (Doi, 1959, 1962) which uses electrodynam-
ic models is interesting. Having noticed the analogy between the /16differential equations for the dynamics of populations and the
processes which take place in electrical circuits Doi used them. asthe models for population studies. The possibilities of analog
modeling are not confined only to systems which describe processes
in electric circuits (networks). Modern analog computers can be
used to model rather complex systems of differential equationswhich do not have analytic solutions in general form. Having at
his disposal for the initial data a function of the fishery effortwhich was determined statistically, Doi determined the populationsizes of the Antarctic Finner and King Crab near the shores of
Western Kamchatka on an analog computer. These results were usedto forecast the fate of these populations given the existing fish-
ing rate.

The ideas of Baranov with respect to an optimum catch are de-veloped to some extent in the work of Hjort (Hjort, 1930, 1932,
1933), Russel (Russel, 1931), Gauze (Gauze, 1938). While in allmodels considered above, the utility function for the population
was the catch, M. B. Shefer (Shefer, 1958) introduced as the
utility function the revenue obtained from fishing as a branch ofthe national economy.

4. Optimum Control Models of Biological Associations

Above we considered several types of models in which the
problem of acting optimally on the population was posed. We notethat the often-used term "control of the population size" is notaltogether correct. In fact, no populations can be considered apartfrom the surrounding biotic and abiotic environment. Even in thesimplest population models this effect is always taken into account
(by parameters, additional terms in equations, etc.). But the en-vironment is determined by the type of BGC that includes the pop-ulation under consideration. Therefore, it seems more natural tospeak about "controlled action on the BGC" where one of the essen-tial variables is the size of the corresponding population. Never-theless here, in the literature survey, and in a certain context
below, we will use the former term in order not to violate a cer-tain standard presentation.
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From the applied standpoint all control models of the popula-
tion size can be classified into two groups: the control of na-

tural and artificial population sizes.

By control in natural populations we mean intervention in

real existing BGC, by control in artificial populations we shall

mean a change in the population size and the stock composition by

age, the optimal planting planning of seeds, the optimal opera-

ting conditions of microorganism cultivators, etc.

A sufficiently large number of studies deal with problems in /17

the second group (Leslie, 1945, 1948; von Foerster, 1959; Spicer,

1955; Yelizarov, Svirezhev, 1967, 1968; Ginzburg, 1968). This is

very natural, since the problems themselves are simpler, which is

apparently related to the simplicity of the trophic relations and

the possibility of determining sufficiently accurately the model

parameters.

The optimality criterion in all these problems is usually re-
lated to economic characteristics such as cost (from our point of

view), biological productivity of one species or another, or char-

acteristics related to the place which the biosystem under con-

sideration occupies in the general structure of the national

economy.

The biological characteristics of the system itself determine

the constraints which are imposed on the solution of the problem.

The problems of controlling natural populations (intervention in

BGC) can be subdivided into utilization problems and suppression

problems.

In the first case, which we will mainly study, a part of the

biomass of a particular species is removed from the BGC and the

biomass removed must have maximum value (again from our point of

view).

In the second case our problem consists of changing the tro-

phic and other BGC structures so that the number of "harmful"

species will be kept at the lowest possible-level (pest control,

use of insecticides, etc.).

Often the elementary unit on which we act is the population

when the BGC is the elementary unit of the biosphere. It is ob-

vious that control of the number of individuals of one or several

species by one or several variables is far from optimal in a sys-

tem as complex as a BGC. Therefore, we pose the problem:of acting

optimally on the entire BGC system even in the case 
when individ-

uals of one or two species from the entire set of species making

up the BGC are of economic value.

13



5. The Simplest Models of Biogeocoenoses

Naturally, before we can formulate the problem of acting op-
timally on the BGC we must have a model of this system.

In biogeocoenology the number of results observations and ex-
periments which were accumulated until now is sufficiently large.
There is also a considerable number of well established special
laws for the development of BGC. However, because of the complex-
ity of studying the many interrelations and interdependences, the
general state of biogeocoeno.tic theory is not yet ona sufficiently
high level topermit the effective solution of the problem of long-
term forecasting of population sizes, or the problem of optimizing
the techniques used in the exploitation of natural arable land.
Nevertheless, rather simple BGC models that reflect certain charac-
teristic features of this large system make it possible to formu-
late for these optimal planning and optimal "yield" problems /18
(in the wide sense) and solve them.

We should hardly expect the results obtained in this way to be
suitablefor working out a concrete plan for the utilization of
concrete BGC. However, the qualitative laws which are obtained by
solving these problems help us, in the first place, to organize
correctly the utilization of natural resources, andsecondzenable
us,in turn to construct more realistic BGC models.

The basis which we used in our book are the quantitative
models of biological associations which were proposed by V. Vol-
terra. We can say that they are one of the many possible BGC
models. An important objection to this point of view is-an ob-
jection which is related to the dimensionality of the problrm. In
reality real BGC have hundreds of species, which in turn, are
subdivided into groups which differ from one another (by age, size,
etc.). If we take for the phase variables only the number of these
groups,the dynamic system which describes the BGC will be horren-
dous. But luckily, the BGC structure is always hierarchial.and
the structure of the BGC as a whole is determined by one crseveral
species which are called dominant. The dynamics of their size de-
terminesthe dynamics of the other species. Therefore, for the
phase variables in BGC models we can take the size of one, two
or several dominant species (these species canl include besides
the dominant species other species which interest us for other
reasons). The interaction with the remaining species and the sur-
rounding non-living nature, can be studied as the interaction with
the environment which was subdivided'into the biotic and abiotic
parts.

Often we cannot say exactly which species are truly dominant.
In such a case the choice is entirely up to the ihvestigator.

Since biological systems are usually very large, and the amount
of control which any regulator can exert is always limited, the
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biologist or engineer must make a choice as to which parameters

of the system he can ignore and which he must control (Ashby,

1959, page 12).

So far we used very little the BGC definition in setting up

models. But as soon as we pass on to the description of the in-

teraction of the dominant types with the environment (in the Vol-

terra models the description of the parameters), we use the BGC

definition in an essential manner. First the parameters of the

model represent the averaged characteristics of various inter-

actions, and the average only reflects reality when it is obtained

over a sensibly and correctly selected set. The isolation boun-

daries which exist in reality and a certain degree of homogeneity

enable us to consider the BGC as the suitable set for the averag-

ing. Second the stability and the permanent BGC composition which /19

are observed in nature, give reason to hope that these averaged

quantities depend very little or not at all on time. All this en-

ables us to consider the BGC as a dynamic system which is

described by the equations proposed by Volterra.

6. Formulation of Basic Concepts and Certain Definitions

By a biogeocoenosis model we will mean a system of n = r + s

differential or differential-difference equations with the cor-

responding constraints on the variables or on their derivatives

with respect to time. Here r zis the number of different species

described in the biogeocoenosis, or if the populations of these

species are further subdivided into certain groups (by age, sex,

etc.) the number of these groups. The r variables of the system

will be either the number of individuals in each group, or the

biomass of .each group or the density of individuals (provided the

individuals are uniformly distributed in space). If it is neces-

sary to take into account the dynamics in the change of environ-

mental factors, this process is described by the remaining s

equations of the system. If the environment is constant, s = 0.

In this case we will often talk about the model and the "bio-

coenosis," meaning by this the biocoenosis which goes with the

given BGC. Such a model consisting of n equations will be called

an n-component BGC model. As we go on we will often omit the word

"model" and talk about a n-component BGC, even though in all cases

we are talking about the model and not the BGC itself.

Naturally from the standpoint of our formalism models

with n = 1 and n = 2 must exist, i.e. one- and two-component models

which we will refer to as one- and two-component BGC. In addition

to this we will consider various models of these one- and two-

component systems, From this standpoint when we talk in the book

about a one- or two-component BGC we do not mean at all that the

entire BGC consists of one or two species. We simply study in our

model these species by relating the interaction with other species

and the interaction between;other species to factors in the
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biotic environment,which are averaged and described by the
parameters of an equation or system.

When n = 1 (one-component BGC) the biosystem consists of the
population and the environment in which this population lives. We
note that when n = 1 we cannot speak about biocoenosis, since the
concept of an association presupposes the existence of at least two
elements of this association. However, the BGC concept which in-
cludes the interaction with the environment, allows us to study
formally also one-component systems.

When n = 2 (two-component BGC) the system consists of two /20
species and the environment. Since the components represent bio-
logical species, in this case we can talk about the model of the
simplest biocoenosis. These two species may compete with one ano-
theror one species can serve as the food for the other species.
In the latter case, we shall talk about biocoenosis or biogeo-
goenosis of the "predator-prey" type.

We emphasize once more that in order to avoid confusion when-
ever we speak about biocoenoses or biogeocoenoses,we only speak
about certain models of these which have been simplified to a
maximum degree and formalized. These simplest models that we will
again call purely formally, one- and two-compoent BGC, are those
building blocks from which more complex models which describe more
realistically large systems such as a biogeoiosis can be built.

By yield collection we shall mean a certain part of the bio-
mass that was removed from the BGC (a certain number of individuals)
of one type of species or another which make up the BGC. The yield
collection is considered as a discrete process, i.e., the collect-
ing procedure takes place at certain discrete instants of time by
selecting (decantation, catching, shooting) a part of the biomass
of the species or groups which make up the BGC.

Since not all species that make up the BGC have the same com-
mercialvalue,it is natural to assign a certain cost to one unitof
the biomass (one individual) in each species or group. By doing
this we take into account the economic factors which occur during
the utilization of the given BGC.

Chap. II. OPTIMAL POPULATION PRODUCTIVITY

By optimal population productivity we will mean the amount of
biomass (or the number of individuals), which was obtained as a
result of collecting optimally the yield in a system consisting of
a one-species population and its surrounding environment (both a-
biotic and biotic).

When we formulate and solve optimization problems wewill only
use deterministic models. This is fully justified if we assume
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that the size of the population used is sufficiently large.

In this chapter we will mainly consider two problems. The

first problem is the problem of the optimal productivity of a pop-

ulation in a stationary environment. The second problem is formu-

lated for a population model in which the state of the environ-

men' (..e concentration of the food substance and the rate /21
at which .it is supplied) depends essentially on the population

size. An example of such a system is an artificial biosystem,
the chemostat.

1. The Problem of Optimizing the Yield Collected from A

Homogeneous Population Described by the Volterra Model

We will consider a population consisting of several organisms

whose size is bounded above by some limiting factor (limited dis-

tribution area, limited amount of food, etc.). In this case the

dynamics of the population size are described by an equation of

the form (Volterra, 1931):

dN
= (a- TN)N, (1)

where N is the number of individuals in the population at the in-

stant t, a is the natural growth coefficient for the number of in-

dividuals in the population, y is a coefficient which takes into

account the competition within the population (for space, food,
etc.), where the coefficients a, y>O.

If we denote by N the initial number of individuals in the

population, then for any instant of time we have

N aNoe~ (2)
N = *+-o -

S+ TNo (eat -

It is easy to see that

lim N =-.
T

Geometrically the solution of equation (1) is described by the
logistic curve (see Fig. 1).

Suppose that in the given system the yield is collected by
selecting a part of the biomass and by removing it from the repro-

ductive cycle. The process of collecting the yield is assumed to
be discrete over time with equal time intervals.
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We formulate the problem of controlling optimally the given
biomass production system, i.e., the problem of determining
the amount of biomass collected in one step and the stepsize be-
tween two successive collections with the requirement that the
total yield collected over a fixed time interval [0,T], be a maxi-
mum. The process terminates at the final instant of time T when
the biomass has been fully collected (Yelizarov, Svirezhev, 1967a).
The time interval [0,T] is broken up into n equal subintervals by
the points ti = h, 2h, . . ., nh = T and at each step the amount /22

of yield which was collected is defined as

g, = kNT, i = 1,2,...,n,

where the index ( - ) denotes the state of the system at the in-
stant when the yield is collected to the left of t. and the index
(+) when it is collected to the right of t.. The elation

N = Nj-(1 - k,), (3)

holds, where the quantities k IO0, 11, which are selected at each

step are considered as the possible control decisions, which de-
termine for the given state of the system tNj, the amount of the

yield which was collected.

Following Bellman (Bellman, 1960). we will consider the yield
collection process as a multistage decision-process with a return
function fi(N) which is equal to the yield collected after i
stages with the condition that optimum decisions were used in
previous stages.

Using the invariant imbedding .methodwe can write the re-
currence relation for the return function:

f (N) = max {kN},

f,(N) = max {kN + f_ [P((1 - k) N)]}, (4)

where N = N is the initial value of the state variable.

For the initial state N we will have for the one-stage pro-
cess

fh (N)= N, k = .
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Then, in view of (3) and (4), and the principle of optimality

f(N)-max k + (1 - k) Nem (t1t) (5)
S a +7 (1i - k) N [eo (t'-t)

Let us introduce the notation', e h =t e -t1) and 6 = 1 - k. It

can be shown that the maximum of f2 (N) over 6 is obtained when

so that the decision in the second stage is

k-1-
N (V. + 1)' (6)

Substituting the value obtained in equation (5), we obtain the

maximum return from the two-stage optimization process: /23

N( +1 C +  when N> a k+O
T----0.f(N) I

=.N when N< 2 k - 0.
x+Tv O. - ) T (I+W

Analogously we find the maximum return from the three-stage optimi-
zation process and the corresponding decision:

N2 ' when N> kO 0

f, (N) T = TW+1
(N 2 -v ,when k=O.

a + TN (X - I) T Z 
< -CW + k'

It is easily seen that if over all stages the value of the
state variable satisfies the condition

N>
(7)
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the corresponding optimal decisions are not zero

and the value of the return function after n stages of the yield
collection process is equal to

f (N)= N + (8)

where

N= No
= + TNo (eh

- 1)

Taking into account that X =eh, h= and n-l- -, we rewrite
equality (8) in the form

2h

aNoeh  T-h ea -1
fA(N) = 2 +No (ez -  -h " -i (9)

e3 +I

We will clarify the behavior of the return function (9) when
the step size h is varied. Since (9) is defined only for h 0
it can be shown that the maximum of f (N) over h is attained inthe

limit when h - 0, regardless of the values of a, y and NO.

Consequently the return function attains the maximum value
when the yield is collected continuously, and this maximum is
defined as /24

r Noeh T -h a e4 - i
lim T . _No+~ (10)

e +1

Since it is assumed that the decision is not zero over all stages,
its value is defined as

lim 2 = 1- a
TN (e +i2N
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and the bound ' must be satisfied. This inequality
enables us to determine the optimal initial conditions when the

yield is collected continuously.

We will consider the case when condition (7) is not satisfied
in a certain stage. We will show that if condition (7) is satisfied
in the i-th stage, it will also be satisfied in any j-th stagebere -

j>i (when the decisions in the successive stages are
selected optimally). Thus, if

NT > h
T(O +')

TNi (eT + 1)

Then, according to (3)

i+1 ah .h

T (eJ )

Consequently

2h

1+1 = e2

It is easily seen that

hence k i+1  0.

Therefore, condition (7) may not be satisfied only in some J
initial stages of the process. Then in these J stages the decision
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must be zero (k = 0), until in the (J+l)-th stage condition (7) is
satisfied. The number J depends on the NO and h selected and /.25

it is defined as

J= E + 1,

where E(x) is the integer part of the number x, and AT is a root
of the equation

SZh + TNo (e2 A r - i)

The return function is equal to

aNoe ' A  (n--J--i) e 2 -i
Gn (N)e + j

where in the first J stages of the process k = 0, and in the re-
maining n - J stages the decision is defined by expression (6) .
This means that when the number of organisms in the population is
below a certain level defined by inequality (7), we must not col-
lect the yield at all, and only when this level is reached the sub-
sequent collections are different from zero. We note that the total
yield depends on the stepsize used in the processand is a maxi-
mum when the collection is continuous.

2. Algorithm for the Numerical Solution for the Optimal
Yield Collection Problem in a Homogeneous Population

In the case when the coefficients in equation (1) are functions
of time or some other parameters of the process,it is not possible
to obtain an analytic solution of the problem and the problem must
be solved numerically. We will construct an algorithm for the
numerical solution of the problem, assuming that the coefficients
in (1) are know functions of time given in the form of a table.

The number of individuals in the population will be called the
state variable, and we introduce the concept of a scale of states
(Moiseyev,1965). To do this we will consider the space (N,t) and
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we will specify the step h over time. We will consider in the
hyperplanes ti = ih the finite sets [Ns 3, the sets of nodes of a

grid (i=1,2,...,n; s=l,2,...,m) where i is the number of the step
over time and s is the number of the level of the state variable.

At discrete instants of time t. = ih,we act on the system by1

selecting a part of the biomass from the population and removingit
from the reproductive cycle. The biomass which was removed from

the population is considered as the yield. We formulate the prob-
lem of maximizing the yield collected in n steps

G = ki.i,

where Ni is the value of the state variable at the instant ti , and /26

k1 i0, II are quantities which determine the admissible decisions

at the same instant of time.

The numerical solution of the problem of maximizing the yield
collected in the system under consideration will be executed on an

electronic digital computer using the following algorithm.

We construct a grid of nodes for the change of:state of the
state: variable [Ns(0)].

Remark 1

1) Generally [Ns (O)] may also depend on the number of the
level over time.

2) We introduce the quantities Gs (Gs is the maximum yield
1 1

in i steps for the s-th node of the state variable). For the given
node at the initial instant of time we let Gsdata = 0, and for

the remaining nodes Gs= - 1 (s / sdata). A total negative yield

for the s-th node denotes that the state variable cannot arrive to
this node.

3) For the admissible values of the state variable in the
(i-l)-st level, over time (G_ l 0O) ,by integrating numerically (1)

we calculate the values Ns(h) of the state variable at the end of

the i-th step,and for all nodes (y = 1,2,..., m) of the next i-th
level we calculate over time the value of the yield at the step
that can be obtained when the state variable makes the transition
from the s-th into the j-th node.
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D = NAs (h) - N' (0).

If the'state variable cannot leave the s-th
node (G 1_<O0) or if it cannot arrive at the j-th node (Di <0)

we set

D=--I.

4) Using Bellman's optimality principle for all possible
(Dj>O) transitions from the (i-l)-th level into the i-th level

over time,we find the maximum total yield over all nodes of the
(i-1)-st level after i steps

G'ax = G Smax _+ Dimax

where Smax is the number of the node in the (i-l)-th level overtime
which yields the maximum yield in i steps.

5) Using the formula

Di
5

max

we calculate the optimal decisions in the i-th level over time for /27
the arrival of the state variable in the j-th node, and if such
transition is not possiblewe set ki = - 1, which allows us to ig-
nore in the analysis of the computational results the corresponding
path of the state variable.

6) The optimal values of the total yield which were found are
printed out and are used to continue the calculations in the next
step over time.

7) Printing out at each step over time the arrays kJ

Dmax' Gmax, NJ(0)(j = 1, 2, . . ., m) and analyzing the results that
were obtained, we can easily determine the optimum path of thestate
variable, the optimal policy and the maximum yield collected ini = 1, 2, . ., n steps.
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Remark 2

Let us assume that we found a path N*, a decision k and the

value of the total yield G* along this path. We can alwaysimprove
the accuracy of this solution by reducing the step over time and
constructing in the neighborhood of N* a new scale of states with
a smaller step for the variable N, and by constructing the new
scale of states in such a way that the pointsof the old
scale are among the points of the new scale. As a result we ob-
tain a new solution, the curve N**, the decision k** and thevalue
of the total yield G** Since the curve N*vas among the admissible
optimization paths, G G

The process which was described can be repeated an infinite
number of times. As a. sult we obtain a sequence of values of the
total yield G*(G** CG . . . and a sequence of decisions

[kn*]. Since the value of the total yield is bounded above (10),

the sequence [Gn* ] converges.

Unfortunately, until now the problem of the dependence of the
limiting values of the unknown quantities on the steps in thephase
and time variables when the iterative process is continued in-

definitely has not yet been worked out.

When we make the calculations we will use the following tech-
nique (Moiseyev, 1965). We fix the step size over time and in bach
stage of the iterative process we will break up the step only over

the phase variable (state variable). After we obtain the "limiting
value" for the given partition of the time axis, we will reduce
the step over time, and repeat the whole procedure, etc.

We give the algorithm which was described above for the num-

erical solution of the problem of optimizing the yield collected
in a homogeneous population, which is described by the Volterra
model in the form of a program (Program 1), written in the ALGOL-
60 algorithmic language (Ageyev, 1965).

Program 1 /28

begin integer i, , , n:. n. sdta, Nint, NINT;
real Ns, N own. Nup. T, alfa, gamnna;
array N. S;: ax. G:aax, Dmax, k, G [I : m], NS, y [1 : 11],
D [ ::: . i: n:]. B [0:2, 1 : NINT];

proced ure i::'cr tn. x, y);
\alue n., x integer n; real x, y;

begin
L: if x > B 10, Nint] then

begin
LI: if x < B [0, Nint- 11 then

begin y : = (B In, Nint] >. (x - B [0, Nint - 11]) +
B In, Nint 1 1 " fB[0. Nint] - x))/
(B [0. Nint] -B [0, Nint- ID: go to L2 -

end else Nint: = Nint - 1;
if Nint > NINT then stop; go to Ll

end else Nint: = Nint - I; if Nint < 1 then stop;
go to L
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L2: end;
procedure f (x, y, r, z);

value x. y, r; real x; integer r; array y, z;
begin inter 1. x, alfa); inter (2, x, gamma);

z: = (alfa - gamma X y [1]) X y 11
end;
procedure rrnge (x, v, r, f, eps, eta. prim. xfin) result: (yfin);

value x, v; real x, eps, eta, xfin; integer r;
Boolean prim; array v, viin; procedure I;

begin real xl. x2, x 3 , h; integer k, j; Boolean out;
array z, yl1, y2. y3 [1 : rl;

procedure rklstep (x, y, h) result: (xh, yh);
real x, h, xh; array y, yh;

begin integer j, k; array z, w 1 : rl, a [ : 5];
a [1]:= a [2]: =a [51: =5 X h;
a [3]:=a [4]:=h; xh:=x;
for k:=1 step I until r do
vh [k]:=w [kl:=y [k];
ior j:= 1,2,3,4 do
begin f (xh, w, r, z);

xh:=x + a [j];
for k:= I step I until r do

begin yh [k]:=vh [k] + a I[j - 11] z [kI/3;
w [k]: =y [k] + a Ij] X z[k)

end k
end j

end rklstep
start: if prim then begin h:=xfin - x; ss:=0

end else h:=hs;
out:=false;

labl: if (x - 2.01 X h - xfin > 0) = (h > 0) then
begin hs :=h; out:=true;

h:= (xfin - x) / 2
end;
rklstep (x, y, 2h, xl, yl);

lab2: rklstep (x, y, h, x2, y 2 );
rklstep (x2, y2, h, x3, y3);
for k:== 1 step 1 until r do
if comp (yl [k], y3 lk ], eta) > eps then /29

go to lab3;
x:== x3;
if out then go to fin;
for k:= 1 step 1 until r do y [k]:=y3 Ik);
if ss=5 then begin ss: =O; h:=-2 X h end;
s: :s - 1: go to labl;

lab3: h: .5 :.: ; , .:- :- far 1e; xl: --x2;
for k:- 1 step I until r do yl [k]:=y2 [<];
go to lab2;

fin: for 1,: -I step I ntil do yfin [kj:-=y3 [k]

end runge; Comment Here we use the standard Runge-Kutta procedure

(Ageeyiht:Aik, Galis, 1966)
for s: 1 step I until m do

begin N [s]:=-(Nup -- Ndown) x (s - 1)/ (m-); G [(s:=--l.0
end; G [sdata]:=-O.O0;

Comment The scale of- states was set up and the calculations
were initialized

for i:=1 step I until n do
begin for s:= 1 step 1 until im do

begin if G Is] < 0 then
begin for j:= I step I until m do D [s, j]:=-l
end else
begin y [11:=N [s]; runge (0, y, 1, f, eps, eta,

true, T n, NS); Ns:=NS [I];
for j:=l step 1 until m do
if Ns < N [j] then D [s, j]:=-I.0 else
D[s, jl:= Ns - N [j]

end
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end;
for j:=l step 1 until m do

begin Smax Ij]:=0;.Grnax [j]:=-- 1.0; Dmax [jl:=0;
for s:= I step I until m do

begin if D [s, j]> 0 then
begin if Gmax Ij] < G [s] + D [s, j] then

begin Gmnax jl]:=G Is] + D Is, j;
Smax Ij:=s; Dmax j:=D Is, ilj]

end
end

end
end;

for j:=l step 1 until m do
begin if Dmax [j] > 0 then

k [j]:=Dmnax [j]! (Dmax j] + N [j])
else k [jl:=-1.0; G[j]:= Gmax [jl

end;
print (i, k, N, Dinax, Gmax)

end i

end program.

We give a computational example for a concrete problem calcu-
lated using the algorithm which was constructed. For simplicity
we let:

a= 1 [1/hr], y = 10-6 [ml/hr],

NO = 0.54-106 [1/ml], T = 500 hr

The results of the numerical solution of the dependence of the /30
total yield on the step size are given below.

Step size, 0 1 2 5 10 20 50 100 500
hr

Total yield 13.0 12.996 12.992 12.894-12.583 11.360 9.331 5.434 1.0
in 500 hr,
'in millions
of units/ml

Many computations on the electronic digital computer have
shown that when the yield is collected optimallythe collection
process becomes quickly stationary. Initial conditions exist for
which the process becomes stationary at the first step.. It is
important that the total yield depends on the step in the process
and tends to a maximum as h - 0.

3. Population of Microorganisms in a Chemostat

An example of a device which can be used to preserve indef-
initely a population of bacteria in an active state and control
its development is a chemostat (Fig. 3), an apparatus which was
designed for the continuous cultivation of microorganisms (Novick,
Szilard, 1950). This apparatus automatically reproduces the nu-
trient environment in the vessel in which the bacteria are grown,
which facilitates the growth of the microorganisms, and at the
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same time mixes the particles of this suspension

Sterilized and chemically pure
liquid food is transferred at a
constant rate from a storage tank
into the vessel with the culture.

Food reser-- - - - This type of supply maintains the
voir same level of liquid in the vessel,

and consequently preserves the con-
stant suspension volume. The bac-

Food level terial suspension is poured out
from the vessel at the same rate at
which new food arrives in the vessel,
The culture is stirred sufficiently

Fiberglass, well in the vessel so that the food
which arrives there is quickly and

Air outlet uniformly distributed in the vessel.
Every particle of the culture can be

/Siphon removed with a certain probability
from the vessel within a certain

Air -m time interval.

Therefore, if we denote by N
the concentration of certain par-
ticles or organisms, by w the magni-

Fig. 3. Chemostat Device tude of the suspension flow through
the siphon (see Fig. 3) per unit time
and by v the volume of the culture,

then the rate at which the particles are ejected from the vessel /31
with the culture is defined as

dNdN - = - v.

The quantity w is called the "dilution rate." It is usually con-
stant.

In a chemostat the bacterial synthesis process is controlled
by one limiting growth factor (LGF) which induces a metabolism
which depends only on this factor.

If C is the LGF concentration in the culture, then on the
basis of the data of Spicer (Spicer, 1955) the synthetic activity
of a bacterial population of density N is characterized by the
rate

dN
= XCN,
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where X is the proportionality coefficient.

On the basis of experimental data (Monod, 1942, 1949; Novick,
Szilard, 1950) it was shown that the LGF used up during the popula-
tion growth is proportional to the rate of growth for a certain
concentration C

dC dN
-q -qCN.

The proportionality coefficient q is measured by the amount of LGF
used up by the bacteria and it is called the "assimilation rate
constant."

When the concentration of LGF in the food which is supplied
is a, and a homogeneous population of density N is grown in the
vessel with the culture, the rate of change of the LGF concentra-
tion in the culture in the chemostat is

dC-= w (a - C)- qCN.

Consequently the growth dynamics of the bacterial population in the
chemostat can be described by the following mathematical model
(Moser, 1957):

dN_t = (,C - () ,v
dC" (11)X= (a- C)- XqCN

Figure 4 shows the graphs which describe the dynamics of the
change in the LGF concentration and the microorganism density N
for the Escherichia coli B population in the chemostat. It is
easily seen that N and C tend over time to stationary values which /32
are defined as

D -N= - (12)
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A LGF(c)

Fig. 4. Change in the concentrationd
l --- the limiting growth factor (C) and the

a I [ density (N) of the Es:cherichia coli B

microorganim :in the chemostat culture

(X = 3.6-10 ml/g.hr, q = 2-10-15 g,
a o 1.5-10- g/ml, w = 0.4 1/hr., NO =

N0

10 1/ml, C1O )

4. Optimal Productivity of a Chemostat

We consider the problem of collecting optimally the yield in
a homogeneous population of microorganisms in a chemostat whose
growth dynamics are described by the system of differential equa-
tions (11) (Yelizarov, Svirezhev, 1967b; Yelizarov, 1968). The yield
is collected by pouring off a part of the suspension that contains
both the biomass and the nutrient substrates at discrete instants

of time ti(i = 1, 2, . . . n; h = T/n; n = const). Only the bio-

mass of -the microorganisms has productive value. At each step we,

remove a certain amount of biomass from the population,

g1= kjN. -

The controls are the quantities k1 [0,11. We formulate the problem

of maximizing the return function (the value of the total yield

n

f.(N)= G= Yj kjNT,
i=1

collected over a fixed time interval [O,T]).

The first integral of system (11) is:

C(t) = a - qV + (Co + qNo - a) e-t, (13)

where N O and C0 are the values of the corresponding variables at the
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initial instant of time.

.Eliminating the variable C from the first equation in system /33

(11), we obtain the result that the process in the chemostat
can be described by the following system of equations which is
equivalent to system (11):

.= [)a - ) + ±(Co + qo- a) e-t]VN-.qN i.  (14)

C (t) = a - qN + (Co - qNo - a) e" t

We note that the quantity

3 = (Co + qNo - a) e1"

in equation (13) decreases monotonically as t increases (w>0),
so that for sufficiently large t, the solution of system (14)
will be close to the solution of a system of the form:

dN ) N N

-=(ka - o)N -q.N (15)
C(t)=a-qN

The state described by (15) will be called a quasistationary state
of the population. It is easily seen that the first equation in
system (15) coincides with the Volterra equation in Section 1

except for the designation of the coefficients. The second equa-
tion in the system relates the density of the microorganisms to
the concentration of food in the vessel with the culture (an ad-
ditional constraint on N).

Suppose that the yield collection process begins at the in-
stant when the population is in the quasistationary state. We
will show that collecting the yield does not violate quasistation-
arity of the population, i.e., the quantity 8 does not increase
in the yield collection process. In fact when the yield is col-
lected the relations

+i = N N (I - k,), (16)

C'x = Cf + (a - C) ki (17)
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hold. A simple transformation of these relations gives

Ci+1 + qNi'+ = CT7 q.VT - (C- + qNT - a) ki

or

= - k1).

Since k _[0, 1], , <?7, which was to be shown.

5. Numerical Solution of the Optimal Productivity Problem
of the Chemostat

In this case, even when the coefficients in equation (11) are
constant, it is not possible to obtain a complete analytic solution
for the problem which was formulated. The algorithm for the numer-
ical solution of the problem of optimizing the chpmostat.productiv-
ity is the same as that which was given for the optimization,of the
yield collected in a homogeneous population. We give the program /34
(Program 2) for the numerical solution of the optimization problem
in the general formulation (a, q, X, w are known functions of time
given in tabular form. The assumption that the yield collection
process is quasistationary is not made).

Program 2

begin integer i, j, s, m, n. sdata, Nint, NINT;
real Ns, Cs, Nup, Ndown, Cdata,T, a, q, lambda, omega;
array N, C, Smax, Gmax, Dmax, k, G [1: m], yfin, y [1:2],
D [1:m, :ml, B (0 : 4, 1: NINT];

Comment:y[l:2] vector with the coordinates N & C

procedure inter (n, x, y);
Comment:The interpolation procedure is described

in Program 1,
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procedure I (x, y, r, z);
value x, y, r; real x; integer r; array y, z;
begin inter (1, x, a); inter (2, x, q);

inter (3, x, lambda); inter (4, x, omega);
z [ll:= (lambda x y [21 - omega) X y [I];
z 2]:= (a - y [2]) x omega - lambda X q X y 11] X y [2]

end;
procedure runge 'x, y, r, f, eps, eta, prim, xfin) result: (yfin);

Comment: The Runge-Kutta procedure is described
in Program 1,

Nint:= I

for s:=l step 1 until m do

begin N Is:= (Nup - Ndown) X (s - l)/(m - 1);

C [sl:=Cdata; G ([s:=-1.0
end G Isdatal:=0;
for i:= l sep 1 until n do
begin for s:= I step 1 until m do

begin if G [s] <0 then
begin for j:=l step 1 until m do

D Is, jl:=--.O
end else

begin y [I:=N Is]; y [21:=C Is];
runge (0, y, 2, f, eps, eta, true, T/n, yfin);
Ns:=yfin I1]; Cs:=yvin 121;
for j:= step 1 until m do
if Ns < N [j] then D Is, j]:=-I.0 else

D Is, j:=Ns - N [jI
end

end;
for j:= 1 step I until m do
begin Smax [j]:=0; Gmax [j:=-1.0; Dmax []]:=0;

for s:= I step I until m do
begin if D Is, j1 0 then

begin if Gmax [j] < G [sl + D Is, 11 then
begin Gmax [jl:=G Is]+ D Is, ii;

Smax [jl:=s; Dmax [jl:=D Is, j1
end

end
end

end;
for j:=l step 1 until m do
begin if Dmax IjI > 0 then

k [jl:= Dmax I[j / (Dmax Iji + N lI);
C [jl:=(a-Cs) X k [] + Cs else

k [j]:=-1.0;
G [j1: = Gmax [j]l /35end;

print (i, k, N. C, Dmax, Gmax)end i
end program

Program 2 was written for an electronic digital computer.
The computations have shown that the qualitative picture of the

yield collection process in the population cultivated in a chemo-
stat is analogous to the process considered in Section 1. Figure
5 gives the graphs for the change in N and C over time for the
optimal yield collection process.

On the basis of a large number of numerical computations
we can conclude that the optimal yield collection process in such
a system becomes quickly stationary, while the transition time of
the process does not exceed the characteristic population time T*.
The characteristic population time is the time it takes the
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Fig. 5. Change in the densi-
1111 C4t6d ty (N) of the microorganisms

and the concentration (C) in
rt 7' the limiting factor during
A9 - i I the optimal yield collection

20 -process in the chemostat (No=

i 260 000 1/ml, CO = 1.2"10-9

2e ,2 g/ml, a = 1.5.10 - g/ml, X=
9 3.6"108 ml/g.hr W = 0.1

"a 1/hr, q= 2-10 - 1 5 g)

i g o ,f -ours _. 10 1011 50 I4t
Fig. 6. The optimal total

Fig. 5 Fig. 6 yield (f ) versus the step
n

size in the process (h)

population-size to reach a level which is equal to 0.9 of
the limit (12):

T'== In 9 1 .

A study of the relation between the optimal value of the total
yield and the step size of the process has shown that this quantity
tends to a maximum when h - 0 (Fig. 6).

6. Total Productivity of the Population Cultivated in the /36
Chemostat

We will change somewhat the formulation of the problem of
optimizing the yield collected in the population cultivated in the
chemostat. We define the amount of yield collected at each step
as

g,= kA'~ . N N(f)d/.
ti-1

This corresponds to the assumption that the part of microorganisms
in the population which is ejected from the chemostat when the
suspension is poured through the bottom of the vessel with the
culture is included in the total yield. We will consider the prob-
lem of collecting the yield with a modified criterion function
in the case when at the initial instant of time the population in
the chemostat is in a quasistationary state.

n T

f,(N) = JkN~+S N(t)dt
i=1 0
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The operator P for the transition from states [Ni3 into

states (N-1, or equivalently, the solution of the first equation

of system (15) over one step can be written as

Nta - O) Noe
(xa- w) t

N () (18)Xa- co ,qNo [e(xa-w)t _- 1

The recurrence relation for the return function is

f(N)= max kN+ W (i)di,

n..

Integrating (18) over one step we obtain

N(t)dt- - In 1 (1 e- :-w

t
i-1

Applying the procedure for finding the optimum decision similarly
as in Chapter II, the values of the return function can be written
as

a) for the one-stage process:' /37

f(N) = N- 0 In - N (I -e-h ea-w)

b) for the n-stage process:

;'." [ X t'-qN (I -- " ] '

Xq I ;.a-

n- (Q-2)(-).a () eh(Xa-a)

) q I e . tQ [ e h ( ka - ca l 2

where

Q y14eh ( --) + Xa-C (eh I)3
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The relation for f n(N) is valid when

2 e (Q a- )

The decision is different from zero

N'

and the relation C(t) = a - qN (t) is satisfied.

7. Calculation of the Total Optimal Productivity of the
Population Cultivated in the Chemostat

The numerical solution of the problem formulated in Section 6
will be carried out using the following algorithm:

1. We construct a scale of states jys(0)I where s = 1, 2,
., m, and y(O) is the density of the microorganismsin the popu-

lation at the instant when the yield is collected to the right of
t..

2. We introduce the quantities G(G is the maximum yield in

i steps for the a-th node of the scale of states). For the given
node we set Gsaa = 0 at the initial instant of time, and for the

Temaining nodes Gs = - 1 (s # data). A negative value for the to-

tal yield for the s-th node indicates that the state variable can-
not arrive at this node.

3. For all nodes [yP(0)1 (p = 1, 2, ., m) of the scale of
states we calculate by integrating numerically system I) together
with equation /38

dJ
- N= (t)

a matrix of values of the state variable N, the LGF concentration
in the vessel with the culture C, and the integral N

J =C N(t)dt
0
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over time at the end of the step (before the yield is collected).

4. For all nodes (j = 1, 2, . . ., m) of the state variable
which can be reached from the s-th nodes (G_1> 0), we calculate

the yield per step (i-th level over time):

= yi [1, s]--ys [I, j] + yj [3 , s].

If the state variable cannot leave the s-th node (Gs <0) ori-1
arrive at the j-th node (DJ<O), we set

5. Using.Bellman's optimality principle for all possible
transitions (DJ>0) from the (i-l)-th level to the i-th level

over time, we find the maximum total yield after i steps over all
nodes in the (i-l)-st level:

Gax = Gs-iax + D1.maxt

where smax is the number of the node in the (i-l)-th level over

time which yields the maximum total yield in i-steps.

6. Using the formula

ki i. - 1, ]

where p = smax , we calculate the optimum decision in the i-th level

over time when the state variable is in the j-th node, and when it
cannot arrive there we set k3 = - 1 which allows us to ignore the
path of the state variable in the analysis of the computational
results.

7. The optimum values of the total yield which were found are

printed out and used to continue the calculations at the next step
over time.

8. Printing out at each step over time the arrays k, Dmx,

Gmax, yj, ys and the values smax when we analyze the computational
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results we determine the optimum path of the state variable, the
optimum policy and the maximum total yield collected in i = 1,
2, . . , n steps.

The algorithm presented above was written for an electronic
digital computer in the ALGOL-60 language as the following program
(Program 3):

Program 3 /39

begin integer i, j, i1, n , sdata;
real Nup, Ndowni, Cdata, T, a, q, lambda, omega;
array ysr It :31 Smiiax, Gmnax, Dmax, k, G [I : m],
virl :31, ys l :3, I: nil, yj 11 :3, I : m], DI: m. I : ml;

Comment:ys [1,s] = N[s] - scale of states
(s = i, 2, . ., m),
ys [2,s] = C[s] - concentration values
LGF at the nodes of the scale of states

ys [3,s] = J[s] - the initial value of the

integral t
J=O N(t)dt;

procedure f(x, y, r, z);
value x, y, r; real x; integer r; array y, Iz; begin
z III::- (lambda X y 121- omega) X y (I;
z 121: (a - y 121) x omega -- lambda X q X y Ill Xy 121;
z 131: omiega X y Ill end;

procednre runge (x, y. r, i. cps, eta, prim, xln) result: (yfin);

Comment:The Runge-Kutta procedure is described in Pro-

fors:=l1 step I until m do gram 1;
begin ys [1, s]:= (Nup - Ndown) X(s - l)/(m - 1);

ys [2, s]:= Cdata; ys [3, sl:=0;
G [sl:=-.0

end G [sdatal:=0;

Comment:The scale of states has been constructed and the
computations have been initialized

for i: = step I until n do
begin for p:=l step 1 until m do
begin for i:=1, 2, 3 do ysr [i]:=ys [i, p];

runge (0, ysr, 3, f, eps, eta, true, T / n, yjr);
for i:=1, 2, 3 do yj Ii, pl:=yjr [i]

end;
Comment:The values N, C and D at the end of the step

before the yield is collected have been cal-
culated
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for s:=1 step I until m do
begin if G [s] < .0 then
begin for j:= I step 1 until m do

D [s, j:=-1.0
end else
for j:=l step I until rn do
D[s, j]:= (if yj 11, s] ys [1, j] then -1.0 else
yj [1, s] - ys [1, j] - yj [3, sl);
end;
for j:= step 1 until m do
begin Smax [j]:=0; Gmax [j]:=-1.0; Dnax [i]:=0;

for s: =I step 1 until m do
begin if D Is, jl u 0 then

begin if Gmax [ji < G [s] D [s. i then
begin Gmax [j]:= G [s] - D [s, !:

Smax [jl:=s; Dmax [jl:=D -. ji
end

end
ehd

t nd;
for j:=1 step I until m do

begin k [j]:=-- l.0; ys [3, jj:=0.0; p:=Smax [jl;
G [j]:=Gmax [j]i
if Dmax [j] > 0 then

begin k jl:= (yj [1, p] - vs [I, jl) / (vj [1, pl); /40
ys [2, jj:= (a - yj[2, p]) X k [j + yj 12, pl;

end
end;

print (i, k, yj, ys, Smax, Dmax, Gmax)
end i

end program,

Computations using the above program have shown that the in-

troduction of an integral term into the criterion function which

describes the biomass collection process in the chemostat more
realistically,increases only the total amount of the yield which

was collected. The qualitative picture of the process is analo-

gous to the picture of the yield collection process in which the

criterion function has no integral term (i.e., in the total useful

biomass, the biomass which is "washed out" from the chemostat is

not taken into account).

As an illustration, Figs. 7 and 8 give the results of the com-

putations on an electronic digital computer for the problem of

optimizing the total productivity of the population cultivated in

the chemostat
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Fig. 7. Change in N and G
for the optimal yield col-
lection process in the gen-

i!'crtij9  eral chemostat productivity
/,- problem (N0 = 260 000 1/ml,
zo- CO = 1.2*10-9 g/ml, a = 1.5"

'IO IIIK . 10-9 g/ml, X=3.6"108 ml/g.h,
zoo z 40 w = 0.1 1/h, q = 2.10-15 g)

_4 " Fig. 8. Total optimal yield

J (f n) versus the step size (h)
S If fl f 19 If40.0 S Zfl S h

in the general chemostat
Fig. 7 Fig. 8 productivity problem.

CHAP. III. OPTIMAL PRODUCTIVITY OF A BIOSYSTEM OF THE "PREDATOR- /41
PREY" TYPE

1. Description of the Mathematical Model

We will consider a Volterra biocoenosis model (a mathematical
model for two coexisting species one of which serves as food for
the other) of the "predator-prey" type under the following condi-
tions: The food of the "prey" is unlimited, the "predator" feeds
only on the "prey." The "prey" propagate in such a way that the
increase in their number over a small time interval is proportion-
al to their number. The increment in the "predators" is propor-
tional to the product of the number of "predators" and "prey," and
the natural mortality of the "predators" is proportional to their
total number.

The model of such a biocoenosis is described by the following
system of two nonlinear differential equations (Volterra, 1931):

dN1t- -Ni (e - T12N2)

dN, (19)
- = N, (- e + T,) (19)

with N 1 (0) =(N 1 )0 ; N2 (0) - (N 2 ) 0 .

Here N1 (t) is the number of individuals among the "prey,"
N2 (t) is the number of individuals among the "predators," el is
a coefficient for the natural increase in the number of "prey,"
E2 is a coefficient for the natural decrease in the number of
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"predators" (natural mortality), Y1 2 is the competitive ability

coefficient of the prey (protection coefficient), 
Y2 1 is the com-

petitiveability coefficient of the 
"predators" (voracity co-

efficient). It is assumed that the coefficients in the system

are positive constants which are independent 
of the age of the

individuals, their number, and time.

The first integral of system (19) is written 
in the form:

n, e , (20)

where C is a positive constant, and

Equation (20) is represented in the phase plane (n1 , n 2) by

by a closed curve (Fig. 9).

When we construct the graphs of the solution of (19) (Fig. 10)

we see immediately that N 1 (t) and N 2 (t) are periodic functions of

of time and that they oscillate about certain mean values: 
/42

t" ' T

These mean values are the solutions of system (19) with the condi-

tion

dN 1 dN2

In the case of small oscillations about the equilibrium 
state.

(N1, N2) the oscillation period 
is

where tl is the time needed to double the number of individualsin.

the first species, t2 is the time needed to reduce by one-half
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the number of individuals in the second species

In 2 In 2

Volterra generalized the results of the mathematical study of the
model system (19) in the form of the following three laws.

i,2

'--'Itr

'7,-

Fig. 9 Fig. 10

Fig. 9. Phase diagram for the mutual relation of two species in a
system of the "predator-prey" type (Volterra model)
Explained in text

Fig. 10. Change in the number of individuals among the "prey" and"predators" over time (t) (Volterra model)
N1 "prey," N2 "predators," T oscillation period

I. The Law of Cycle Periodicity. The oscillations of
two species are periodic and their period depends only on el, e2 ,
and C, i.e., on the growth and mortality coefficients, and also
on the initial conditions for the number of individuals in both
species.

II. The Law of the Conservation of Mean Values. The mean
number of individuals in both species is constant regardless
of the initial number of individuals in both species as long
as the growth and mortality coefficients of both species
remain constant and the conditions of attack and defense
(el , e2 , Y1 2 , Y2 1 ) remain the same.

III. The Law for the Shift in the Mean Values. If extermina-
tion (fishing, shooting) is equal and proportional to the number
of individuals in both species, the mean number of the prey species
will increase and the mean number of the predator species will de- /43
crease. Increased protection (fertilization, fodder, protection
from pests, etc.) of the prey species increases the mean
number of individuals.

This last law holds only in cases when e > 0. Let ak be the
ratio of the number of individuals in the first species captured
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per unit time in the biological association to the total number of
individuals in this species. We will denote by X the analogous
quantity for the second species. Then the coefficients e, E2 in

(19) will become

I 1  - k and E2  + ~X.

In this case we will have

dN N (el -- -- T.N)
Sdt(21)

dN = N (-- 2 -- + 72.,V1)

When e - ~X>O, there will be periodic oscillations, conversely

when X exceeds the value c 1/, i.e. when e1 - ak<O,there will be

no oscillations and both species perish.

In the case when X = E 1 /a, equations (21) give

dN1 - T"N 1NN,dt

dN N (-- ; + "frll)

where

+
e = e+ -.

For these three cases we can construct the integral curves

(Fig. 11):

I. N, e- Y, 1v = C'NV'eVeY 'when e- ak'> 0.

II. N. e-Yl l'' = Cn"ey' ; 'I when el - ak = 0.

III. NV: e- 3"' ' = C"N7Ne r~.S whenex - ax < 0.
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4f6 Fig. 11. Diagram for the change in the os-
cillation cycle for the numbers N1 and N 2

/J a (integral curves I, II and III)

Explained in text

We can see from Fig. 11 that when the extermination rate ex- /44

ceeds the limit (kX = el), both species perish ultimately.

In essence model (21) which was studied by Volterra is the

model for the yield collection process (continuous collection).
Using this model, Volterra was able to explain quantitatively in-
teresting phenomena which were observed in the 20's in Mediter-
rean fishing. Unfortunatelyzyield collection in which the catch

coefficients are considered to be constants which increase
the natural mortality coefficients of the species making up the
biocoenosis (the catch coefficients do not depend on the number
of individuals),cannot be used for the optimal planning of the
productivity of biosystems.

2. Optimal Yield Collection in a Biosystem of the "Predator-
Prey" Type

Suppose that we have a biosystem whose dynamics are described
by the system of equations (19). We formulate the problem of the
maximum productivity of the given biosystem. It is assumed that
only the "predators" have commercial value. It is assumed that
the yield is collected by catching the "predators" at some
discrete instants of time so that

(N 2 ) = (N2 ) (1 - k i )

where the k i are the unknown decisions (k 1 10, 11). We must collect

the yield (catch the "predators") in such a-way that the total
yield collected in the time [O, T] is a maximum (Yelizarov,
Svirezhev, 1969).

To solve the problem we will use dynamic programming. Wb note
that an analytical investigation of the optimal yield collection
process is extremely complex for a system such as system (19).
Therefore, we adopted the cybernetic model approach (investiga-
tion of the problem using "machine experiments" on an electronic
digital computer).

"Machine experiments" have shown that if we study a pure
Volterra system (system (19)) without constraints on the number of
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"predators" and "prey," then the representative point in phase space

(N 1 , N 2) passes at each step when the 
collection is optimal from

a smaller to a larger cycle, without reaching the "stationary"

cycle. However, when the yield collection process is considered

on a finite time interval,an optimal decision exists. However,

since for any arbitrarily large time interval the system does not

reach the stationary state as the yield is collected and passes

to cycles with a constantly increasing number of "prey," the

practical value of such a model is very doubtful (in real biologi-

cal systems, the number of "prey" is always bounded above, due to

the limited area, epizooty, etc.).

3. Optimal Yield Collection in a Biosystem of the "Predator- /45

Prey" Type (Other Models)

Let us try to augment the Volterra model by introducing cer-

tain constraints in order to have a stationary state for collect-

ing the yield. We will consider several types of constraints:

Constraints on the Rate at which the "Prey" Propagate

We will analyze the following system:

t= v - 112NN2

vo ° (22)
8N 1, whenN1 < (22)

VO, when N>.

The coefficients el, e2, Y1 2 ' y2 1 have the same meaning as in

system (19), but in contrast to system (19) when the number of

"prey" exceeds a certain limit, the rate at which they propagate

becomes constant and does not depend on the number of the "prey".

The phase trajectories of this system for various initial condi-

tions are plotted in Fig. 12. It is easily seen that depending on

the initial conditions two states are possible: If 1)0<Vo/el,

system (22) is fully analogous to system (19) described above, if
(N1 )o- /el, system (22) has a quasilimiting cycle (thetrajectory

touches this cycle) for which N 1 = V0 /e1 , and its equation is

equation (20) of the Volterra cycle with the appropriate coeffic-

ients.
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Fig. 12. Family of phase trajectories of
the system describing the change in
the number of "predators" and "prey" when

2 the propagation rate of the "prey" is con-
strained

T2A

e =1 1/h. , Y, = 0.05 /h
Yl= 0.001 I/.h, vo= 3000)

When we formulate the optimal yield collection problem for /46
system (22), numerical calculations show that in this system just
as in the system considered above, the representative point in-thecollection process passes at each step.to ever larger cycles.

Thus, the constraint on the propagation rate of the "prey"
of the type given above does not allow us to obtain in a certain
sense a "stationary" state for the yield collection process of the"predators." Therefore for the reasons which were given for sys-
tem (19), system (22) cannot be used as the model in the study of
the optimal yield collection of "prey" in a biosystem of the"predator-prey" type.

Bounds on the Number of "Prey"

We will consider the optimal yield collection process for the
case when the dynamics of the system are described by equations
(19) with the additional condition that N 1N*, i.e., the number
of "prey" is bounded above (where, for example, N 1 denotes that
level of the number of "prey" above which various types of epi-
demic or other unfavorable phenomena for this species occur in
the population).

It is easily shown that this system when it reaches thelimit N1 N* behaves as a population (in this case the population
of "predators'") whose size increases or decreases exponentially
(depending on the values of the coefficients e2, 2 1 and the value

N ).2

System (19) with the bound Nl<N* also has no "stationary"
state for collecting the yield. Thus, if y2 1 N >e 2, for finite
T (T is the time during which the yield is collected in the system)
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the optimal decision after the system reaches the bound is as fol-

lows: k 0 almost everywhere, except at t = T, where k = 1. When

1N* 2' k = 1 at the instant t* when the system reaches the

bound, and subsequently k = 0. When y2 1N
* = E2 , k = 0 almost

everywhere except at a single point ti[t*, TI, where k = i.

Thus, even in the case when there is a bound on the number

of'"rey" it is not possible to obtain in system (19) a'tationary"

yield collection process which has practical value.

Introduction of a New Criterion Function

We will introduce into the discussion a new criterion func-

tion which will take into account that the yield collected are

both individuals among the "predators" and among the "prey."

When cl and c2 are some cost coefficients (cl , c2>0) per unit

biomass of the "prey" and "predators" respectively, the yield per
step is expressed in the form

g = (kx)ic (X,)-i -(k)ic., (N2)-, (23)

where' (k1)i, (ki2)% [01 11 are the admissible decisions in the step and:

(N1)I and (N2 )i are the values of the state variables in the i-th

step to the left of the instant ti when the yield is collected. /47

The total yield, whose maximum value must be determined, is equal

to

Computations have shown that the optimal yield collection pro-

cess for the Volterra model with the criterion function (23) is as

follows: 'the larger the cycle which is considered, the larger can

be the yield collected (the collection is carried to the lowest

level into which the state space can be broken up both for the

"predators" and the "prey '). The representative point in the col-

lection process makes a transition to ever increasing cycles.

This version is also uninteresting, since it does not yield a

"stationary" yield collection process.
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Bound on the Number of "Predators" and "Prey"
Due to Interspecific Competition

(Kostitzin Model)

When interspecific competition among the "predators" and
"prey" is taken into account, we are lead to a consideration of the
the system (Kostitzin, 1937):

dN N, (81 - TIV - TI1 N1)
Na (24)

= N2 (-e82 + T2xNL - T22N , )

Here y1 1 , Y2 2 are coefficients which take into account inter-

specific competition. All coefficients of system (24) are positive.
When the conditions a) and b) below are satisfied

a) 8-T21>E-Ti1,

[eiT22 (rTa - r 2 ) + 8T(T12 --+ T22)] 2  4 T21Tz (eIT 22 + ea1 12 X

b) X (e~xT - e8Tn)

system (24) has a stable limiting point (node) and the coordinates
of the point are positive and different from zero. This means
that the system is damped to such an extent that there are no
oscillations in the number of species, and that their number varies
monotonically over time. When the optimal yield collection (dis-
crete collection) problem is formulated for system (24), then for
the case when only the "predators" have commercial value, i.e.,
when the criterion function per step has the form

gi = Ck ),• (V21,

the optimal yield collection process consists of the following:
the collection goes on up to the lowest level into which the state
space for the number of "predators" can be broken up, and the
lower this level, the greater the yield collected. "Stationary"
collection does not take place.

From the standpoint of the practical value of the result ob- /48
tained,the most interesting yield collection process is the process
for the model described by system (24) with a criterion function
of the form (23), where cl, c2 >O, i.e. when both the "predators"
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and the "prey" have productive value.

In this case after a very short transition process (one or
two steps) the yield collection becomes "stationary" and the col-
lection for each species is analogous to the yield collection
in homogeneous populations which are described by logistic
curves.

The dependence of the total yield on the step size
for the process is given in Fig. 13. This diagram shows that the
maximum yield, just as in the cases considered in Chapter II, is
obtained when the collection is continuous.

Fig. 13. The total yield (f ) in the

ri M- ! 'predator-prey" system versus the step size
h(N 1) 0 = 1000, (N2)0 = 10, el= 2 1/h,

7, -, -2 = 1 /h, yll 12 Y21 = 0.001 1/h,

j-Y [22 = 0.01 l/h, C 1 = 1, C 2 = 50, T =I 1 8 1 500 h) (reduced to unit time T)

4. Numerical Solution of the Optimal Yield Collection
Problem in a Biosystem of the "Predator-Prey" Type

The optimal yield collection problem in a biocoenosis of the
"predator-prey" type will be solved numerically for model (24) in
accordance with the following algorithm:

1i. We construct a scale of states {Ni.1(0)) =N x A),
where i = 1, 2, . . ., m, j = , 2, ., p.

2. We introduce into the discussion the quantities Gi (Gi't t
the maximum yield of "predators" and "prey" in t steps for the
(i,j)-th node of the scale of. states. Atthe initial instant of time
we set Gdata,jdata = 0 and G1 ,J = - 1 for all nodes i # i data0 0
and j # jdata.

3. We construct a transition matrix for the change of state
of the variables from one level to another over time Nil,jl

12
(il = 1, 2, . . ., m; jl = 1, 2, . . ., p) by integrating numeri-
cally system (24) over one yield collection step.

4. For all nodes (il = 1, 2, . ., m, jl - 1, 2, . . ., p)
cf the scale of states which can be reached from the (i,j)-th node
(Gt 0), we compute the value of the criterion function, and us-

ing Bellman's optimality principle we find the maximum total yield /49
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over all nodes of the t - l-th level over time in t collection

steps.

5. We calculate the optimal decisions in the form of the
matrix MKIrJ in the t-th level over time.

6. Printing out at each step over time the return matrices
(G ) and the optimal decision:matrix (MK), we analyze the compu-
tafaoxnal results and determine the optimal paths for the state
variables, the optimal policy and the total maximum yield col-
lected in t = 1, 2, . . ., n steps.

This algorithm was programmed for an electronic digital com-
puter (Program 4) in the ALGOL-60 language.

Program 4

begin integer i, j, ii, jl, i2, j2, 1, m, n, p, t, idata, jdata;
real Nlup, Nldown, N2up, N2down, D, Dmax, T, epsl, eps2,
gamma 11, gamma 12, gamma 21, gamma.22;
array MK, N 12 [1: m, I: p, 1: 2, G, Gmax Il:m, 1:p],
C [1:2], Ni [1: m], N2 [1: p], N, Nfin [1 :2];

procedure runge (x, y, r, f, eps. eta, prim, xlin) result: (yfin);
Comment:The. Runge-Kutta procedure is described in

procedure f (x, y, r, z);
value x, y, r; real x; integer r; array y, z; Program 1

begin z [1]:= (epsl-- gamma 12 X y 12] - gamma 11 X y [11) :< v [1];
z [21:= (gamma 21 X y [1] - eps2 - gamma 22 X y [21) X y [21

end;
for i:= I step 1 until m do
NI [il:= (Nlup-Nidown) X (i - 1) / (m - 1);
for j:= 1 step I until p do
N2 fj]:= (N2up - N2down) X (j - 1) / (p - I);

Comment The scale of states has been construct@d
for i:=l step I until m do
for j:=l step 1 until p do
begin N [1]:= NI [I]; N 12]: = N2 [j];

runge (0, N, 2, f, eps, eta, true, T/n, Nfin);
for 1:= 1,2 do NI12 [i, j, l]:=Nfin [1];
G [i, j]:=-1.O

end; G [idata, idata]:=0;
aomment:The transition matrix for the change of state of
the state variables over time from one level to

fort:=l step I until n do another has been constructed & l he
begin for i:=l step I until m do initial return matrix has been get

for j:=l step I until p do up
begin Dmax:=0;

for il:= I step I until in do
for ji:= step I until p do
begin D:= (if G [il,11 j11 < V

N12 il,. jI. 11< Nl il \
N12 [ii. . 21 < N2 [j] then - 1.0 else
Ci x X 12 i i l. jl.1N-l i
C [21 x (N12 [iI, ji. 2] - N2 ji I
G [il. jill);:
if D < Dmax then go to LI;
Dmax :=D; i2:=il; j2:=jl

50



LI: /50
end; Gmax Ii, jl:=Dmax:
PMK [i, j, 1:= (N12 [i2, j2, I1- NI [il)iNI2[i2, j2, 11; IMK

[i. j. 21:=
(N12 [i2, j2. 21 - N2 l) /(Nl2 [i2, j2. 21);
it MIK (i, j, I < 0 V MK [i, j. 21 < 0 then
MlK [i, j, ]:=M K [i, j, 21:=- 1.0

end;
print (t, IMK, Gmax);

for i:=l step I until m do
for j:=l step until p do
G [i, j]:= Gmax Ii, ji

end t
end program,

The computational results which were obtained using the above

program for various h are plotted in Fig. 13.

Thus, the following conclusion can be made: when the optimal

yield collection process is studied in a biosystem 
of the "preda-

tor-prey" type, we must use mathematical models of the type (24)

(models of this type which also include models for more general

cases were proposed for the first time by V. A. Kostitzin (Kos-

titzin, 1937) with criterion functions of the type (23).

We will state one proposition which is not proved rigorously

but which is probable according to the results obtained from

"machine experiments."

Often natural biocoenoses or biogeocoenoses are in stable

dynamic equilibrium at the instant when external intervention

takes place (for example, the yield is collected in a particular

species). When the stationary state exists for the yield collec-

tion process, the transition to this state from the initial state

takes place, as many calculations on an electronic digital compu-

ter have shown, in one step without collecting the yield, i.e.,

in a time which is much shorter than the time in which the bio-

coenosis production is used (the yield is collected). Consequent-

ly in those cases when the sizes of the species which make up the

biocoenosis vary over time aperiodically without oscillations, and

a stationary yield collection process exists, Bellman's optimality

principle can be replaced by the simpler "local optimality" prin-

ciple (optimality in one step) without committing a large error,

and the very complex dynamic programming procedure is replaced by

the local optimization procedure.

In this chapter we considered optimization problems for two-

component biosystems. Historically it so happened that the models

of such biosystems have always been studied as models of the sim-

plest biocoenoses consisting of two species, one of 
which serves

as food for the other ("predator-prey"). But, as we already have

shown above, such models are essentially models of biogeocoenoses

(or some subsystems of these), i.e., biosystems consisting of an

51



association of live organisms and their environment. Therefore, /51
depending on the context, we will call the same mathematical
models in one case biocoenosis models and in the other biogeocoe-
nosis models, preferring, of course, the more general term biosys-
tem.

CHAP. IV. STATIONARY YIELD COLLECTION PROCESSES

Inthe preceding chapter we already dwelt on the problem of
the importance of stationary states in the utilization of bio-
systems. In fact, the stationary yield collection process ensures
both the preservation of the biogeocoenosis over a sufficiently
long time period, and from the economic point of view the very im-
portant rhythm and qualitative constancy of the utilization
process itself. Therefore, we considered it useful to investigate
stationary yield collection processes in a separate chapter.

1. Yield Collection in a Biosystem of the "Predator-Prey"
Type. Stationary Process with a Small Fixed Step.

Suppose we have a biosystem of the "predator-prey" type, the
dynamics of which are described by the system of differential
equations (24) (Chap. III). When certain conditions are satisfied
these equations describe the aperiodic change in the number of
"predators" and "prey" in the biocoenosis.

We will formulate the problem of maximizing the productivity
of the given biocoenosis (the problem of maximizing some criterion
function) over a sufficiently large but finite time interval
[0O,T]. It is assumed that the yield collected (both'lredators"
and "prey" are collected) is a discrete process with a sufficient-
ly small step h = At = T/n (n is large) and that the yield col-
lection procedure "does not deteriorate" the biocoenosis, i.e.,
the number of individuals in each species,is and remains,a non-
decreasing function of time. By a decision in the given system we
shall mean the yield collected, i.e., the collection of a certain
amount of "predator" and "prey" biomasses with their subsequent
removal from the reproductive cycle (Yelizarov, Svirezhev, 1968;
Jelisarov,1969).

Many "machine experiments" have shown that in such a system
an optimal yield collection process exists which becomes quickly
stationary, so that for T sufficiently large and At sufficiently /52
small, the process can be considered to be stationary from the -

very beginning with a great degree of accuracy. The requirement
that the criterion function be maximized (the total yield col-
lected over the time T) is replaced by the "local optimality" re-
quirement (the requirement that the criterion function be a maxi-
mum in one step). In fact, for sufficiently small At we can write:

AN,_ A1 (El - N - TIA'1i) At

AN 2  ! N (-- e(-2 + T2l - T22 2 ) A 22
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The criterion function (the total yield) can be written in the

form

i=1 j=1

where n is the number of collection steps', r is the number of

species in the biocoenosis, cj ~0 is the unit cost for the bio-

mass of the j-th species, ANj is the increment in the biomass of

the j-th species in one step.

We introduce the new criterion function I = G/T, which defines

the return in one step (as a unit of time) for the stationary yield

collection process. This replacement simplifies intermediate

calculations without changing the final results. Thus,

I - cN 1(, - T12 N - TnNV,) + c0N 2 (- e2 + T21N 1 - T22N,). (25)

On the basis of the assumption that the derivatives of the

species sizes with respect to time are nonnegative, 
and from the

fact that only positive values of these numbers make sense (the

condition that the biocoenosis "does not deteriorate"), it fol-

lows that the maximum I (if it exists) must be attained in the re-

gion 0 determined by the inequalities:

1 - Y12NV2 - TiN > 0

- e + T21N1 - T22 ON > 0 (26)
N 1 >0, N2 >0

We will call this region the "feasible" region.

We can easily see that the criterion function (25) is non-

linear and the constraints (26) are linear, so that the problem of

finding the maximum I is a typical nonlinear programming problem

(Kunzi, Krelle, 1965; Carr, Howe, 1966). In the case when the

stability condition

81'f21 > Ez2T11

is satisfied, the feasible region 0 determined by the inequalities

(26) is the region AKLM (Fig. 14).
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St/& Fig. 14. Feasible region Q(AKLM)

Explanation in text.

To simplify the discussion we assume that yl2 Y= 2 1. Taking

partial derivatives of I with respect to N1 and N2 and equating

these to zero to obtain the necessary condition for the existence /53
of the extremum, we find in the plane (NI , N2 ) the point (N

O , NO )

which is a candidate for the extremum.

No,= .2cicei2 - 82 21C (c; - c)
4 cicrnuyj - ; (- ()7

(27)
No e= .uct (c2 - c) - 2cc--Cast27

4C1CuT1t - T21 (ch - cx):

A necessary and sufficient condition that the maximum occurat
the point (NO,NO2 ) (the concavity of the criterion function in the

neighborhood of the point (NO, NO)) is that the following condition

be satisfied for the second partial derivatives:

IN, <o0; > 0.

It is easily seen that the first inequality is satisfied, and
the second inequality implies that it holds when

ca c 4Tny2
+ -- 2< .

We introduce the notation:

a 82u = e 1'22
81T2 ' e 8Tu
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Then

C +C 2 <4a . (28)
Cl C1

This means that a necessary and sufficient condition that the
criterion function I attain its maximum in the plane (N1 , N2 ) is

that the two costs cl and c2 satisfy inequality (28).

We will try to determine under which conditions the critical

point (NO , N O ) of the criterion function I lies in the feasible

region 0 determined by the inequalities (26). We substitute
the coordinates of the critical points (27) in (26) and take into /54

account that yl2 = Y21:

721 SezT.cl (c. - cl) - 2c2cs,'Eln]81 - -&clcC- 2 - C i'll 
- r 2

4cCcTnli - -(c2 - cl)'

, l [(c2cT2 - cc (c - ci1 (cl -2 c
T c 12j-2TIT - "-"l (C' -C' > 0Cl)

4c1c -ultl - T~ (c, - c )

E2, T2 2cCelm - e&TT2cC (( - )>

4cI2TU s -- f., (. - cI(0

r 8elT2cl (C2 - C) - 2ClCEs'Yiiil

4c4c27ul2 - 2:, (c - c)
4rccet7.__ - t2. (c - c)
4CcTZ2  Y c -1 )2> -0,
Cnci (c! -. ) - 2clseC >>0
4cics'jlrt - r22 (ca - c)

We assum the for definqualiteness that the denominator which is the
same in all these inequalities is positive, i.e.,

4cjc2TIxT22 - rT (c2 - c)? > 0,

4sTu.Tr > (C., - c)0

4ap > -. + c- 2.

But this is the inequality (28) which was obtained above. Now the

study of the four inequalities given above becomes simpler. Multi-
plying them by the denominator and equating like terms we obtain
the system
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2clce2 8TuliT2 - cieiT21 + cicje.iiC + c+c2eu.,T1 T2i + ce 2TlT2l > 0

- 2cjcie2TnT2  c E2 1 - CiCz82e 'A1 CAc'ePl' 2 T2  + ceiT22 T1 > 0

2c1,6c2T22 - E2T21c 2 (c 2 -- c,) > 0

ej,2 cc1 (c2 - c) -- 2C1C2 F2, 11 > 0O

2 2
Dividing the first inequality by c2 , the second by c

2 , the

third and fourth by c'c2 , we reduce the system of inequalities to

the form:

, > eIT2 -19TlTm

CS 28TnTs + e1T 2 1T1

c > 82T 1 + 2eiTul±N - ei x+ 2T 1

1+2

C es11i <1-2 la~

or equivalently to /55

C i -2.3)

> +

-'> 2-2

s<- I - 2a.

It can be shown that if the last of these inequalities is satisfied:,
the first three inequalities are valid for any 5>0 and c1 /c2>0.

Thus, a necessary and sufficient condition that the critical
point (NO, NO ) of the criterion function lie in the region 0 and

that atthis point the criterion function attain its maximum value
is that the following system of inequalities be satisfied:
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<4a (29)
S+ 2 < 4a.C1. C

It is interesting to determine the limiting relations among

the internal parameters of system (24) for which the extremum

point (NO , N O ) belongs to the region Q.Writing the second and

third inequalities from (29) in the form of equalities, and

eliminating cl/c 2 , we obtain

3 (30)
1 +23

This equality determines the maximum permissible relations be-

tween the parameters of system (24) for which for given values

c/c 2 , the extremum point of the criterion 
function will lie in

the region 0.

Figure 15 shows the curve a = f(l/B) which can be used to de-

termine with the given coefficients from system (24) the admissible

boundaries for the change in the cost ratio c1 /c2 for which the /56

point (N 1 , N 2) lies in the interior of the region 0.

Fig. 15. Nomogram for determining the
admissible boundaries for the change

in the cost ratio cl/c 2 from the given

coefficients of system (24)

2 Explained in text

0 0
When aor>/(1 + 20), the extremum point (N1, N2) does not lie

in the interior of the region n for any cost ratio cl/c 2 . In this

case the criterion function I attains its maximum on the boundary

of the region 0 which is determined by the straight lines

(1) T1 N1 + Ti,V- = El,
(II) T21N1 - T22 N = e,
(Ill) . N2 = 0.
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The coordinates of the vertices of the triangle KLM are

easily determined:

BIT 2 - E4 221 eI'21 - eTnu

N1K== 9 N2K
12 + 7u1-2 N21 + TnT22

Nr = .- Ng = 0

NM = N2,. = 0.
T

The values of the criterion function (25) at the extreme points of

the region 0 are equal to

IK = IL = 0,
ea (Te - e'Tn)

IM - 2 -

We will investigate the behavior of the function I on the

lines I, II, III. We will show that on the line I the function I

has a unique stationary point (the point for the maximum). To prove

it we will proceed as follows: we express one variable in terms

of another variable (for example, N1 in terms of"N2 ), and using

coupling equation (I), substitute this value of N1 in equation (25).

By eliminating one variable we reduced the function I of two vari-

ables to a function of a single variable.

It is known that the criterion function I takes on equal

values at the points K and L (Ik = IL  0). By Rolle's theorem

there will be a point R between the points K and L on the line

I,R(L<R <K), such that I'(R) = 0. The point R is easily deter-

mined. Its coordinates are

28xrT te eif@ E2.721iH

NjR =
2,n (T2 ±i T1Th2)

81- E2 711
NIR =2R - 2 (T 1 - T11T22)

The value of the criterion function at this point is equal to

IR = ( 21 - 'cTl) *
458 ( 2 ] + I
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Using the elimination method, it can be shown that the func- /57
tion I has also a unique stationary point (maximum point) P with
the coordinates

2 (TZ + Tu1T2I)

2 (Tti + iT)) Tn

on the straight line II.

The point P can lie either on the segment KM or not on it
(to the left of the point M).

If N2P 0, the value of the criterion function at the point

P is equal to

Ip = (E 92, .
__ t (Ts 2+ T22)

But if N2p O, the maximum value of I on the straight line II is

attained at the point M.

On the straight line III the function I has also a unique
critical point (for the maximum) Q with the coordinates

NQ = 8' Nq = 0.

Since the point M lies on the straight line III, it can be
easily shown that,

IQ >IM, where IQ- - C1.

Since the maximum I on the lines II and III depends only on
one cost cl, it is natural to compare first Ip and IQ. We will

show that IQ> Ip. The proof will be by contradiction.

Let QE, PE-Q and

IQ ( Ip.
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Subtracting Ip from IQ, we have

ITasT22 - 2ee-Tiu T- 8e T ~- T 0

and

The last inequality implies N2P<0, i.e., P 0. which con-

tradicts the given condition. Thus, on the lines II and III the
maximum I is always attained only at. he point Q.

To find the absolutemaximum of the function I on theboundary
of the region n we must only compare IR and IQ. Then

1,= maxl ,  R}= R L mniax c, Fc.},

where /58

92 (T221 + T11.22)

From here, if c1<Fc2, I attains the maximum at the point Q.

If C < FC 2 , I attains the maximum at the point R.

Thus, depending on the coefficients of system (24) whose val-
ues are determined by the internal structure of the biocoenosis,
the criterion function (25) considered by us can attainits maximum
either in the interior of the region 0, or on its boundary.

In the first case the maximum I is attained at the point
(NO, NO) and the optimum yield collection process consists of re-

moving the increment in the "predator" and the "prey" biomass from
the system in one step of the process up to the levels determined
by the corresponding coordinates of the critical point (NO, N).

In the second case, depending on the ratio of the costs per
unit biomass collected which is determined by external factors,
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and also depending on the relations among the coefficients in

system (24) which are determined by the internal structure of the

biocoenosis, two types of optimal decisions can be made, namely:

a) if the maximum of I is attained at the point R, the pro-

cess in which both the number of "predators" and "prey" are main-
tained at some constant levels determined by the coordinates of

the point R is optimal, and the yield which is collected is only

the increment in the "predator" biomass per unit time which is

determined by the step in the process, since the biomass incre-

ment in the "prey" at this point is equal to zero.

b) If I attains the maximum at the point Q, the stationary

optimal yield collection process consists of creating a situation

in which there are no "predators" and the number of "prey" is

maintained on a constant level equal to el/2y when the increment

in the "prey" biomass is collected in one step of the process.

2. Lower Bound on the Number of "Predators"

("Health" Norm)

It should be noted that when real biosystems are described a

somewhat different region is characteristic in defining the sys-

tem of equations (24), and consequently also in defining the cri-

terion function (25). It must include a constraint on the minimum

number of "predators" needed to prevent epizooty among the "prey!'

Therefore, instead of the constraints (26) we must consider con-

straints of the following form:

e- 7A't2 - T11N 1 '> 0

- s + T21N, - -,22- > 01, (31)
N 1> 0; N 2 > a > 0O

where a is some "health' norm for the number of "predators" for /59

the given biocoenosis.

When we study the problemof maximizing the criterion function

(25) in the region bounded by (31), we see easily (Fig. 16) that

if the maximum of I is attained in the interior of the region

Q'(ABK) then the sufficient condition for the existence of the

extremum coincides with (28)

Taking into consideration the constraints N2 )a>O, we will

clarify the conditions when the critical point (NO, NO) liesin the

region 0'. Proceeding analogously as above, it can be shown that

in order that the stationary point (NO, NO) lie in the interior
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Fig. 16. Feasible region .'(AABK) deter-

mined by (31)

of the region O' and that the criterion function I take on a maxi-
mum value at this point, a necessary and sufficient-condition is
that the parameters of system (24) and the cost ratio cl/c 2

satisfy the following system of inequalities:

Ca +2 2 <4

C 
Ci

--2+4t _ 21c (32)

where

If the inequalities (32) are not satisfied, I attains the max--
imum on the boundary of the region W'. A study of the behavior of
the criterion function on the boundary of the region 0' has shown
that depending on the internal properties of system (24), and on
the external action on it by means of controlling the cost ratio
cl/c 2 per unit biomass removed for both species, the following

cases can occur (see Fig. 16):

1. If N1T> NLB the maximum value of the criterion functionis

equal to:

a) N2R, N2p> a, then

I* = max [IT, Jp, IR] ,

where ZT' Ip IRare maximum values of the function I on the cor- /60

responding lines:
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b) If N 2R, N2p( a, then

I* = max {IA, IB, Ir).

c) If N2R a, N2P>a, then

I = max {IA, IT, IP} = max {IT, Ip}

d) If N2 R> a, N2 p<a, then

I* = max (IR, IT, I, ) = max {IR, IT).

2. If N1TN1B, the maximum value of the function I is equal

to

a) If N2 R, N2p>a, then

I = max("B, IP, IR = max {(f, IR}.

b) If N2 R, N2 p< a, then

P = max.{IA, Is, IT} = max {IA, IB}.

c) If N 2 R <a, N 2 R>a, then

I1 = max (la, IB, /p}= max (IA, Ip}.

d) If N2 R>a, N2P<a, then

1* = max {IR, IB}.

Thus, the optimal productivity problem of a biosystem of the
"predator-prey" type in the formulation given above can be fully
investigated and solved.

3. Comparative Study of the Possible Existence of Stationary
States with "Nondeteriorating" Types of Constraints for
Two Different Models

The Kostitzin Model of a "Predator-Prey" Biosystem

The system of differential equations

dN = Nl1 - T,,i, - t11N 1)-- , (33)
d = N 2 (- e 2+ '21N 1 - T, 2N)

which describes a biocoenosis of the "predator-prey" type (the
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Kostitzin Model) has two types of solutions.

If the condition

[18T 2 2 (r1 1 - T2 2) + 2 T1 1 (T1 2 + r 2 2) 2 <

(34)< 4T12,, (sl22 + 27i12) (el8yl - E 1),

is satisfied (weakly damped system), the number of "predators" and /61
"prey" make damped oscillations over time, and the system has a
non-zero singular point, a stable focus.. The phase portrait of such
a system is plotted in Fig. 17.

If condition (34) is not satisfied (strongly damped system)
the numbers vary almost monotonically, and the system has a singu-
lar point, a stable -node.. The phase portrait for such a system is
plotted in Fig. 18.

Fig. 17. Phase portrait for
system (22), when the point
K is the stable focus

M' Fig. 18. Phase portrait for
system (22), when the point

/ - K is the stable node.

Fig. 17 Fig. 18

In Section 1 of this chapter we studied in detail the problem
of the stationary collection of the yield with a small fixed step,
in the biogeocoenosis described by system (33). When we proved
the existence of a stationary process we did not use the conditions
which determine the type of singular point, it sufficed that it
existed (this ensured that the feasible region 0 was bounded). In
fact, the introduction of damping terms ensures both the existence
of the single points and the boundedness of the region Q and sta-
bility, which, in turn, ensures that the simplex Q is not empty.
Consequently, for a system with damping (Kostitzin Model) regard-
less of whether the number of "predators"cr "prey" varies periodi-
cally or not, i.e., whether the system has for the singular point
a focus or a node, it suffices for the stationary yield collection
process with a fixed small step that the system be damped, i.e.,
that it have a singular point and that this point be stable.

The Volterra Model of A "Predator-Prey" Biosystem

We return to the problem of the optimal stationary yield col-
lection in the biocoenosis, described by system (25). The
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investigation of the stationary yield collection with a smallfixed

step in such a system reduces to a study of the 
following problem:

to determine

max {I = c, (el- T1 ~ V.)+ cS 2,(- 1\') (35)

subject to the conditions 
/62

N,>0, dN,>0

N 2 >O, dN 2 > (36)

Conditions (36) determine the feasible region 0

:i (37)

The region £ which represents a halfstrip is plotted in

Fig. 19.

Fig. 19. The feasible region £ determined by

(37)

Setting .the first derivatives of I with respect to N 1 and N

equal to zero, we see that the necessary conditions for the 
exis-

tence of the extremum are not satisfied at any point in the inter-

ior of the region 0. Consequently, the function I does not have a

maximum in the interior of 0. We will investigate the behavior of

I on the boundary of £. The problem reduces to the study of the

following function of a single variable

efclN, if <-; N, <

cIrel Ce2 N-, if 0 < N2 <

T21 T21 12

-ce! 1 c+exT1 rN, if eL< N6
Tn T1 T
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It is easily seen that this function attains a maximum when -
N1 = -, but an infinite value for the size of one of the

species has no real meaning for us. Thus, we have shown that for
the biocoenosis described by the Volterra Model, a stationary pro-
cess with a small fixed step does not exist. But if we intro-
duce into the Volterra Model even very weak damping (as Kostitzin
did), the feasible region 0 becomes bounded, and this type of
stationary collection problem may have a finite solution.

4. Stepsize, The Decision Parameter for the Stationary
Yield Collection Process

It is interesting that an extension of the decision possi-
bilities when the step in the process is also considered as a de-
cision parameter makes it possible to obtain a stationary optimal
yield collection process even in those models in which under more
rigorous constraints (a fixed step specified in advance, a small
stepsize , "non-deterioration" conditions, etc.), no stationary
collection process existed.

Suppose that we are given a "predator-prey" biocoenosis des-
cribed by a system of the form (25). As we have shown above when
the step was specified in advance, it was not possible to have a
stationary yield collection process in this case. We will now
show that by choosing appropriate bounds for the phase variables,
and mainly by choosing the step for the process, the optimal yield
collection procedure can be made stationary in such a system.

We will assume that the number of "predators" and also the
number of "prey" are bounded below, so that

N ">N (38)

Below we shall see that only one of these bounds is essential.

We formulate the problem of maximizing the yield collected in
one step (local optimality)

max {I = ciAN + cAN,}, (39)

1  O 1 0where AN1 = N - N , AN2 = N - N2 is the increment in the number

of "prey" and "predators" in one step. In addition to the bounds
(38), the variables N 1 and N 2 are constrained by the relations

(26) determined from the equation for the cycle.
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We will consider this problem geometrically. We will con-

struct in the plane (Nl, Ng) a cycle, all points of which satisfy

the second condition in (38); the first condition need not be sat-

isfied. The cycle with the maximum amplitude constructed in this

manner will be called the "maximum feasible cycle" and it will be

denoted by r (Fig. 20). We write the expression for I in the

form:

I = {ciN + c,N!} - {cN 4 c,N.V}= 1I - o.

The expressions' I, = cN + ceN! and lo = c - + c-.\ are equa-

tions of straight lines in the plane (NI , N2 ). The quantities

I1/ 1 and 10 /c1 are the segments cut off by these lines on the N1

axis. It is clear that I attains a maximum valuewhen I1 is a max-

imum and 10 is a minimum. But since the variables N1 and N2 are

related by the equation of the cycle, these straight lines must

have common points with the cycle P. Clearly the straight line

which is tangent to F above corresponds to the maximum value Il ,

and the line which is tangent to F below corresponds to the mini-

mum value I0 (see Fig. 20). We will call these lines the "maxi-

mum" and "minimum" tangent lines, respectively. Their equations

are:

(I) Nx= c- A ("Maximum" tangent line)

(II) N= 1  O- ("Minimum" tangent line)

These are equations of two parallel lines with a negative /64

slope (c1 , c2 0), where a = arctg c 2/c 1.

The point A corresponds to the initial state of the system,

and the point B to the final state. The time needed for the tran-

sition from the point A to the point B determines the step. The

amount of yield collected is determined by the vector AT, more

precisely by its projection on the N 1 and N2 axes. By construc-

tion among all possible values of the step and among all 
admis-

sible states of the system, it is precisely 
this step and these

limiting states which determine the maximum possible 
return from

the yield collected.

The optimal stationary yield collection strategy will consist

of the following: the system makes a transition into the state

described by the point B, after which a certain amount of "prey"

equal to 6N1 = (N1)B - (N1)A and "predators" equal to

8N2 = (N 2 )B - (N 2 )A are removed from the biocoenosis. This brings

the system into the state represented by the point A, and then it
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moves along the trajectory F to the point B. After the system
makes a transition to the state represented by the point B, the
process is repeated. The step is determined by the time needed
for the transition of the system from point A to point B.

In Fig. 20 the greatest admissible cycle F lies above the
straight line N1 = N1 , and the bound on the number of "prey" has

no effect on the nature of the optimal process. We will consider
the situation when the line N 1 = N* intersects the greatest ad- /65

missible cycle (Fig. 21). Here two cases can occur:

a) The line N= N* lies below the point A. This case
does not differ from the case considered above. The bound on the
number of "prey" has no effect on the optimal yield collection
process.

b) The line N 1 = N* lies above the point A (see Fig.

In this case the optimal stationary yield collection strategy con-
sists of the following: the system makes a transition to state B,
after which an amount of "prey" equal to 6N1 = (Nl)B - NI is re-

moved from the biocoenosis, and an amount of "predators" equal to
8N2 = (N2)B - (N2 )A'. Thus, the system makes a transition to

state A'. The transition can be described eit er by the vectors
" and 'A, or by the vector A-- = A- + A A", which is clear
from Fig. 21. Then no yield is collected in the time interval
when the system makes the transition from A' to state B. This
time is the unknown optimal step for the process. After the sys-
tem arrives at point B the process is repeated again.

From everything that has been said it follows that the bound
on the number of "prey" is not essential. Of course, in case b)
the bound does have an effect on the yield which is collected, and
the optimum trajectory contains points which lie on the boundary
N1 = Nl*. But the optimum stationary yield collection strategy

remains qualitatively the same. Only the bound on the number of
"predators" has an effect on the greatest admissible cycle, which,
in fact, determines the optimal trajectory.

In principle it is possible to construct a process in which a
bound on the number of "predators" has no effect on the selection
of the greatest admissible cycle, but in this case the decision,
in addition to collecting the yield, i.e., removing from the bio-
coenosis a certain number of individuals of different species, must
also include a method for introducing into the biocoenosis a certain
number of individuals from certain species, i.e., instead of being
passive it becomes active. Since these problems are beyond the
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4' A',

I/ I \

Fig. 20 Fig. 21 Fig. 22

Fig. 20. Stationary yield collection process in a Volterra system

of the "predator-prey" type when the step in the process is con-

sidered as a decision parameter (bounds of the type (38))

Explanation in text

Fig. 21. Stationary yield collection in a Volterra "predator-

prey" system when the step in the process is considered as a de-

cision parameter (constraints of type "b")

Explanation in text

Fig. 22. Stationary yield collection in a "predator-prey" system

described by equations (33), when the step in the process is the

decision parameter

Explanation in text

scope of our study they will not be considered here.

In an analogous manner it is also possible to obtain the

stationary yield collection process with the selected step for a

biocoenosis described by a Kostitzin model of the form (33) where

the number of "predators" and "prey" oscillate about a certain

equilibrium (weakly damped system). Figure 22 gives the phase

portraitfor such a system. We will introduce a lower bound on

the number of "predators"

N,>N:.

We will represent the phase trajectory of system (33) with the

initial conditions

69



(N)o - e91 . + 1T1 (N) 0
rT1 + TIIT2

in the plane (N1 , N2 ). We will call this trajectory the "greatest /66
admissible" trajectory. By analogous reasoning we arrive at the
following formulation of the optimal stationary yield collection
strategy: The system makes a transition to the state B, afterwhich an amount of "prey" equal to 6N = (N')B - (N)A and

an amount of "predators" equal to 6N2 = (N2 )B - (N2 )A are removed
from it. Thereby the system makes the transition to state
A. Then the system moves along the trajectory from point A
to point B. No yield is collected in this time period. When
the system arrives at point B, the process. is repeated again.
The step is determined by the time necessary for the transition
of the system from state A to state B. It is clear that the yield
collection strategies,using the stepsize as a decision parameter
in biosystems described by the Volterra and Kostitzin models,do
not differ in principle.

5. Stationary Yield Collection Process for Models of More
Complex Biosystems

We will consider a special case of a biogeocoenosis model
consisting of n species (Kostitzin, 1937). We will assume that
the graph of the trophic relations in the biogeocoenosis is
linear, i.e., that the i-th species feeds only on the (i-l)-thspecies, which in turn is the food for the (i+l)-th species, etc.
The last n-th species is not eaten by any other species. Suchbiogeocoenosis is described by the following system of differen-
tial equations:

dN1 = N( e- N, = 1,2, .... n, (40)
1=1

where .Yii = -Wi (i 0 ), i 0, i+l 0, yi. i-1 + 0. For all other
(1, ) Y =0. The coefficients e1>0, ei<O (i = 2,3,..., n).

Qualitative studies of system (40) have shown that the sta-tionary point of such biogeocoenosis is always asymptotically
stable, i.e., there are no undamped cycles in such asystem. The solutions of the system represent either damped os-cillations about the stationary point or converge monotonicallyto it.
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We will seek the stationary yield collection process in such

system. Since this system has a stable singular point, we have

reason to believe that for this system a stationary yield col-

lection process with a small fixed step exists. The problem can

be studied as a nonlinear programming problem.

The criterion function has the form

n n

I= c 1 (e - _;N;) (41)
L=1 I=1

(the increment in the biomass of each species in one step is
removed).

We assume that the step is sufficiently small so that the in-

crement in the biomass is linear over time. The step is selected

per unit time.

The "nondeterioration" conditions for biosystem (40) will be

written in the following form:

S-- 1YNi>O • (42)

1=1

These constraints define the feasible region D. If the

criterion function (41) is strictly concave in the region
0, the maximum of I exists and is unique.

We will consider the optimal productivity problem for bio-

system (40) when n = 3. The mathematical model of this biosystem
has the form:

dN= Nx (~ - T12N 2 - 11N 1)

I = N• (- e + 'N 1 - (43)

dN- N3 (- e3 + T.N 2 - Tai3V3)

Biologically the given system can be represented as follows:

The first species is vegetation, the second species are herbivo-
rous animals and the third species are predators who feed on the
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herbivorous animals.

We must find the maximum total yield per unit time, i.e.,
the maximum of the criterion function (41) when i = 1i, 2, 3 and
satisfy at the same time the following constraints:

N,, N,, N3 > 0
81 - TN 1 - T1 2 N2 > 0

- 8+ T2 1N 1 -- T 2N 2 - 2 3N 3 > 0(44)

--e + T32N, - r33,N > 0

The stationary point of I is determined from the system:

e1c, - 2Tc,Ni + (c - cI) T 1.- 2 = 0-- ec + (c, - c,) T21N, - 2T22c2N, + (C3 - c,),,..') = 0 (45)

- e3c3 + (c3 - c) rTe 3N, -2r33 c3 .3 = 0

Here we assume that yl2 = Y2 1 ' 2 3 = Y3 2. The coordinates
of the stationary point of the criterion function are

o 2e7rS_2C3 + elT (C3 - C2)' l -- T:Z3rT3 (c3 - c.) r -a -
4
e':T- c 3

2 [TuT,' (c. - c,)2 cl + T2 sa (Ca - c)c3 -
4

u, : : ci CC3

N2 = 2 [2 T11Tr cic2c3 + 83THIT23 (C3 - C2) CICa - 81721733 (.2 - CI) CIC 3 ,
2 [TuT' (C3 - c2) C + ~133 ( - c1) C~ - 4,iTt.j'TccjcCj]

4
No 48aTiTclca+2su+n3T-(c3c2)c-C 2)CIC _ , 2I(c3-c)(cc-eCl) T2 (c -C), /68

2 [TTy (c[ - ca) cI + , 211 (c2 - cI)2 c3 - 4T1 s22T33CiC2C31

A necessary and sufficient condition that the criterion func-tion I have a maximum at the point (NO, NO , NO), in the region
(44) is that the quadratic form (41) be negative-definite, i.e.,
that the function I be concave in the neighborhood of this point.The conditions that the quadratic form be negative-definitive im-ply that

4T T,22cc, - (c2 - ci)' T2 > 0

TuTr (c3 - c) 2 c1 + T T33, (c.- - c,)2 c3 -
4 TyTZcTs3Cc cc3  < o
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S Fig. 23. Feasible region 0 (the

tetrahedron ABCD) determined by

P (44)

A necessary and sufficient condition that the stationary

point (Ny, NO, N) be a point at which I is a maximumis that the

internal parameters of system (43) and the corresponding costs

cl, c2 , c3 satisfy the following 
system of inequalities:

4 T11 T 2 2C1c. 2 - (c2 - c1)' s 2 > 0

TniT. (cs - c) Cl + T~a33 (c, - c1)
2 c3 -

4 TirT2 2 Tr33C1CC3 < 0

e T2C 1(c3 - c2) +8 3TzlT2 ac3(c3 - c2)(C" - c1) + 28 2T 1 Ta3c.2C 3(C2-c)-

- 4 eL2,,Ta3cicc3 < 0
2 TuT33eC2s + T11n 23 3 (c3 - C2) - T21T33 8 ( - c1)< 0

4e83 T1T.22CIC2 C3 + 2e 2 lTr 2 3 C1C2 (C3 - C2 ) - T21T23S 1C1(C3 - cz)(c -c,)-

- erc 3 (c2 - c1)2 < 0,

and that the point (NO, NO, NO) lie in the interior of the region /69

bounded by the planes:

e - Th=NM - T 0N = 0, (P)

- e8 + %TN 1 - T2aNV - T221V2 = 0, (Q)

- e+ T32 N -. T33N3 = 0. (S)

We will construct in the space (N, N2, N3 ) the region 0

bounded by the planes P, Q and S. In the process we will take in-

to account the condition

P-iT> ejfi.

for the stability of the biosystem.
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It is easily sepn that a necessary condition that the sta-
tionary point (N6, N2 , NO) lie in the interior of the region 0

is that the coordinates of this point satisfy the inequalities:

0 < N < eATM - enTI2

TuT33

If one or more of 1hese inequalities are not satisfied, the
stationary point (NO, Nu, NO) of the criterion function does not

lie in the interior of the region 0, and the maximum value of I
must be sought on the boundaries of the region 0 (Fig. 23).

The optimization of the productivity of biosystems
with n>3 is the same in principle as long as the system contains
no cycles and the feasible region for the criterion function is
bounded.

CHAP. V. OPTIMIZATION PROBLEMS RELATED TO CHANGES IN THE TROPHIC /70
STRUCTURE OF BIOGEOCOENOSES

1. Dynamic Equations for Biological Systems

A very large class of biological systems (biogeocoenoses),
populations, photosynthesis systems, enzymatic reaction systems
in the living organism) can be described by the following dynamic
equations:

dNi n n

= a + Yeij Nj - N1, TNi , i= 1,2,..,n. (46)
i=1 j=1

Here N i are the phase variables of the dynamic system (46). These

can either be the number of species in a BGC, or the sizes of pop-
ulation age groups, or concentrations of chemical substances
in an enzyme system. Since we study BGC modelswe shall mean by
Ni the number of individuals in the i-th group having a certain

i-th characteristic (i-th species, i-th age group, etc.). Then the
ai are quantities which characterize the emigration or immigration

of individuals in the i-th group, .ii is the natural growth
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coefficient in the i-th group. The expression e..N. (i # j) char-
acterizes the mutual transformation of individuali ind associated
transitions between groups, for example, when N. are the sizes of

the age groups in one species. The quantities y..ii take into ac-

count the effect of limiting factors within the species (intra-
specific competition, limited area, etc.). The quantities Yij

(i 4 j) characterize the interaction between individuals from dif-
ferent groups (interspecific competition, symbiosis, parasitism,
etc.).

2. Simplest Dynamic Model of a Biogeocoenosis

The simplest BGC model is the dynamic system in which the
phase variables are the number of species which make up the BGC.
Since BGC is in a certain sense a closed system, we can assume
that no migration occurs between neighboring BGC, so that a i 0.

The effect of the environment is taken into account by the
parameters Yij. It is assumed that the individuals of one species

are completely identical (they do not differ by sex, age, size,
etc.) and they cannot reproduce individuals of a different species.
Therefore, e.. = 0 (i 7 j). Then (46) is written in the form

i_1

This system was studied by Volterra and V. A. Kostitzin. System /71
(47) has 2n stationary equilibrium states:

a) One state of the type

NJ= N, .... NI = 0.

This state is stable if all natural growth coefficients are nega-
tive.

ej< 0, i= 1,2,...,n;

b) n states of the type

NI-I = 0; N .

S ... = = 0, =1,2,...,n.
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These states are stable if

i >0, Tri > 0, -*Tiu < eIy,

S= 1, 2, .... i -1, i + .... n;

n(n - statesc) states

etT2 ET2 22 e21 1 -e,,3 :V

TuTt -T 12T2i T**Tv. - TnTn1 '

d) and, finally, there exists a stationary state in
which all species are represented. This state is determined by
solving the following linear system

TN = , i 1,2,..., n. (48)
j=1 (48)

We can determine in the usual manner under which constraints on
the parameters of system (47) the solution (48) is stable.

Only this state has no N. values which are zero. In any
other stationary state (47) tiere will necessarily be zero N.

values. If the components of the vector N(N 1, N 2 , . . ., Nn) which

vanish are known, the nonzero components are found by solving the
reduced system (48), in which the rows and columns which corres-
pond to the numbers of the zero components of the vector have been
eliminated.

3. Concept of the Trophic Structure and the Trophic Graph
of a Biogeocoenosis

Above, without going into great detail (section 5, Chap. IV)
we used the concept of the trophic graph or the graph of trophic
relations. Here we shall study this concept in greater detail.

The BGC model which was given in the previous section is a /72
dynamic system, the behavior of which is completely determined by
the vector of initial conditions N0 ((N1) 0 , (N2 )O, ... (Nn)0],the vec-

tor E(el E2 , . . ., en)and the matrix F(Yij)i,j = 1,2, ... , n

where the stationary stable states of the BGC depend only on e and
F. If the ei are parameters which are predominantly determined by

belonging to a class of species, the elements y.. of the matrix

characterize both the intraspecific competitive relations (i = j)
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as well as the interspecific competition (i # j), i.e., essentia)ly
they determine, together with the ei, the BGC structure. We note

that the parameters Yij may characterize not only the trophic rela-

tions but also other types of relations. Therefore,we shall use the

concept "trophic" in the generalized sense, and include in it also

symbiosis, interspecific competition for food and parasitism, etc.

We shall consider simple examples of BGC with different
trophic structures.

*a) Suppose that the BGC consists of a single species
population and its surrounding environment. If enough food and
other factors necessary to sustain life are available in the en-
vironment, the population size (N) increases without limit, so
that

dN~- aN,

where N(t 0) = NO is the initial population size, and c~>O is the

natural growth coefficient for the population. The propagation of
such populations is only limited by the surrounding environment

and by intraspecific competition which begins to manifest itself

when the number of competing individuals within the species is large
so that

dN = aN - TN2 .

where

lim N= .

Here y>0 is determined both by the conditions in the external en-
vironment as well as the character of the competition within the
species. The species whose population size in the BGC is described
in such a manner, will be called "prey" of order zero, and will

be denoted graphically as the zero node in the graph (see Fig. 24).

b) Suppose that the BGC consists of two species, one
of which is "prey" of order zero, which serves as food for the
second species, the "predator" of order one. A system of this
type is described by the equations
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dN - Nl (e2 -Ti2N-- T12 N)
dNN- N2 (82 ,T21N1 T22N2)

If N1 is the number of "prey" and N 2 the number of "predators" /73

we must have eX> 0; E2 < 0; Yl, V22 > 0; 712 U 721 < U. On what basis are

the signs of these coefficients chosen? If there is no "preda-

tor" we have case a) where the number of "prey" is only limited

by the surrounding environment. Therefore, e1> 0, Y1 1 0. If

there are "predators" the rate of growth of the "prey" natur-

ally decreases. Therefore Y12> 0. If there are no "prey" then the

"predators" who are deprived of food will die out at the rate e2 N2

so that we must have e2 0. The appearance of "prey" is accom-

panied by an increased rate of growth of the "predators." There-

fore Y2 1 <0. An increase in the number of "predators" leads to

intensified competition within the species, and consequently to a

drop in the rate of growth of the "predators" so that Y22>0.

We will represent this in the form of an oriented graph

(Fig. 24).

Subsequently when we represent the trophic BGC structure, we

will use a graph which is constructed according to the following
rules:

1) The nodes will denote the species of which the BGC iF made

up. Naturally the number of nodes is equal-to the number of species.

All nodes are divided into two types: "prey" of order zero, and

"predators" of all orders.

2) An arc of the graph, which connects two nodes, indicates

the presence of a generalized trophic relation between the spe-

cies which correspond to these nodes.

3) If the interaction between two species is such that the

biomass of the first species stimulates an increment in the bio-

mass of the second species, and the biomass of the second species

suppresses the growth in the biomass of the first species, the
arc is oriented from the first node to the second node. The

simplest case of such interaction is when individuals in the

first species serve as food for individuals in the second spe-

cies.

4) If the interaction between two species is such that the

increment in the biomass of both species is either stimulated

simultaneously (the species form a coalition) or is suppressed

simultaneously (competition between two species for the same
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food, area, etc.) the are which connects the two corresponding
nodes is not oriented. Neverth3less, we shall distinguish two
types of arcs, arcs which connect species in a coalition and
arcs which connect competing species.

Figure 25 gives an example of a trophic graph for a certain /74
BGC. In it the first and second species are "prey" of order zero
which are related among themselves by competitive relations. The
third and fourth species are "predators" of order one which form
a coalition. Individuals in the third species feed on individuals
of the first and second species (without preference of any kind)
and individuals in the fourth species feed only on individuals of
the second species. The fifth species is a "predator" of order
two, which feecdon individuals of the third species.

5 Fig. 24. Linear oriented graph

of a "predator (2) - prey" (1)

system

Fig. 24
Fig. 25. Trophic graph of a
BGC model

Explained in text

Fig. _5

4. A Dynamic System Determined by the Trophic Graph

The number e can be made to correspond to each node of the

trophic graph, where for the nodes corresponding to the "prey" of
order zero e>0, and for all remaining nodes e<0. In the first

case e characterizes the natural growth in the number of "prey"
under optimal conditions for its development; in the second case
it denotes the natural mortality of the "predators" in the com-
plete absence of food.

To each arc of the graph (i, j) we can make correspond the

numbersYij and Yji (i : j) which characterize the effect of a par-

ticular type of.interaction between the i-th and j-th species on

the size of the i-th ( ij) and j-th (yji) species. 'If the are is

oriented from i to j, then ij>0, and Yji <0. If the arc is not

oriented, then for a coalition,both yij and Yji are negative, and

in the presence of competition they are positive. If the nodes
are not connected,the corresponding i = yji Y 0.

The trophic BGC graph has no arcs which lead from a node to

the same node. These arcs correspond to the relations within one

species. The numbers yii which correspond to these arcs can be
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associated directly with the nodes of the graph, which allows 
us

not to consider the arcs themselves. Thus, to each i-th node cor-

responds the number ii. Since the relations within the species

reduce mainly to competition within the species, Yii> 0.

For the graph shown in Fig. 25, the vector e and the matrix
F will have the form

e r 1  Tr12 T13 0 0/ T21 T22 T23 T24 0
e= - ; 3= -a1 - T32 T33 - 73j T35
-e 0 - 742 -T43 T44 0
-E 0 0 - Tas 0 T5s

In this case for convenience all ei and Yij are assumed to be posi-

tive.

The dynamic system is constructed from the vector e and the /75
matrix F:

dN1
N (e1 - T12N2 - T13N3)

dN = N- 1 22N2  y23N3  TSIV,)
N ( e3 + T31N + T3 N2 - T33N3 + 1-3 IV - T35.V5)

dNa
Y = NV (e4 + 7 I3N - ,) 7N

d = e(- 753"V3  - 55N5)

or

dn -dt e

where

In , (In N1 , In N., ... , In NV).
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In exactly the same manner it is possible to construct from
any trophic graph the corresponding dynamic system which is the
mathematical model for the given BGC.

5. Optimization of the Trophic Structure

If all n species coexist in the BGC, their sizes in the
stationary state are determined from the equation.

(49)

We can formulate the following optimality problem: what must
be the trophic BGC structure which is basically determined by the
matrix r in order that the total value of the BGC be a maximum?
By the total value of the BGC we shall mean the sum of biomasses
whose value we estimated in a certain way or the number of all in-
dividuals in the BGC in the stationary state. In other words we
must maximize the following functional (ci> 0 is the unit cost for

the biomass (individual) of the i-th species):

cVi =( ( c r-' (50)
i=1

over the yij, which can be constrained in various ways.

We will consider these constraints in greater detail. First,
we have natural constraints related to the signs of the Yi;

evidently it is not possible to change the type of interrelations
both among individuals in different species as well as among in-
dividuals within one species, only their degree can be changed by
changing the absolute values of the y...

Second, the absolute values of the yij can also be constrained /7E

in certain ways. These constraints arise both from the stability
requirement for the stationary state, and also from the limited
possibilities of changing the quantities themselves.

Constraints of the first type represent a certain n 2 -dimension-
al octant in the n 2 -dimensional space of the yij (the dimension of

the octant can be smaller when certain yij 0).

Constraints of the second type represent in this octant a cer-
tain feasible region of the values of the variables ij. Thus, our

opti ization problem reduces to finding the maximum of a function
of n variables over the region 0 determined by the constraints
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on the y.ij If the system

(dWet).- c= -j '  = 0, k, I = 1, 2,..., n. (51)
i -=d1 i=et

where det is the determinant of the matrix r

det 4 0, and

A.. is the cofactor of the (i,j)-th element of the determinant has
13 2 2

solutions {(Y}E and in addition to this the n x n matrix R

with the elements

m , k, 1, s, m= 1,2,..., n

is negative-definite, then

I(T ) = max I.

If any of these conditions is not satisfied, the optimum solution

[y( ) in which we are interested will always lie on the boundary
ij

of the feasible region n.

It is clear that when the number of species is large and when
the trophic structure is complex, this problem can only be solved
numerically. We will consider simpler but also clearer models.

6. Optimal Structure of a System Consisting of Two Species

We will consider a BGC consisting of two species of individuals
and the surrounding environment. Suppose that the species either
compete among themselves for the same food, or that one of them
are the "predator" and the other the "prey." The model of such a
system is described by the equations

= N x (el - TnNi - T12N2)
dt

= N2 (e - T21N, - TN) (52)
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where in the first case e,, e2 , > 0 , V, , Y > 0, and in the sec-

ond case' E1 > 0, < 0, Y1, Y,.,, 1'2 > U, ',21 < 0.

Their stationary sizes are determined from the formula: /77

- = IT2 - e'21 eTii - ei

T 1TT - Tr121 TuT -- T1rT21

This solution is strictly positive and stable, if

e8122 > Elr12, (53)

eT1 > rlT. (54)

Conditions (53) specify certain natural constraints in four dimen-
sional space y].

The function which is maximized has the form

I = c (e~y2 -- e T,) + c- (e~,, -- elT2r) (55)
TnT, - TUTU

Equating to zero the first derivatives of this function with
respect, to all y gives:

cy,, = i'T't; ce, = I'y .

c e = I'T; c,,e = I'T.* (56)

Here I is the value of the function at the point (y11 Y2 2 , Y12
* 22) at which its first derivatives vanish.

It is easily seen that in the "predator-prey" case the system
(56) does not have a solution 'in the feasi ll region, since
I, c 2 , Y2 2 >0, and e2<0, so that cc2<I -22.

Let us pass on to the case of two species which compete for
food. We will show that also in this case system (56) has no solu-
tion in the feasible region. From (56) we will have

c! • .8 c ,(57)
T1  -- C1 T2 -1  -il'
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Substituting (57) in (53) we obtain:

C1l 81 C

8e " > 0.

which is not possible. The point ( 1 1 , 2 2* 12 2 1 *) lies on

the boundary of the stability region beyond the boundaries of the

feasible region determined both by the inequalities (53) and by
other constraints.

It follows from what was shown above that the function I does

not have an extremum in the region 0. It takes on its maximum

value on the boundary of the region. But since the region 0 is

an open set which does not include its boundary, we must study the

behavior of I in some neighborhood of points on the boundary. /78

We will determine the region 0 for the case of two competing
species. For simplicity we let 712 = Y2 1. Since in three-dimen-

sional space (yll, Y1 2 , Y2 2 1, Y1 1 Y2 2' Y1 2> 0, the open region 0

always lies in the positive octant, and it is bounded by the coor-

dinate planes. On the other hand conditions (53, 54) show that 0
is also bounded by two other planes. In addition there are other
possible types of constraints which we will not consider for the

time being. The region 0

Q , >IT2 e T, 0 a (58)

is plotted in Fig. 26. It represents the interior of the trihedral
angle with the vertex at the coordinate origin.

A Fig. 26. Feasible region 0 determined by
"d 1(58)

Since I attains its maximum value on the boundary h0 which is
not part of the feasible region, we must study the behavior of I
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in some neighborhood of the boundary points.

However, we can proceed more simply: we will include in the

feasible region all boundary points at which I is not infinite.
ThEse points are all points which lie on the faces of the trihedral
angle, except the edges 071 1 and- Y22 and 0 and possibly the edge

OA. But the points which lie in some neighborhood of these edges

are of the greatest interest to us.

At all points on the edges 0Y 1 1 and 07 2 2 (except possibly the

coordinate origin) the function I takes on infinite values, since

the denominator in (55) is zero at these points whereas the numera-

tor is different from zero. For points on the edge OA, the denom-.

inator and numerator in (55) vanish simultaneously. Hence we

must resolve the indeterminancy.

Let us calculate the values of I on the plane y1 2 = 0:

i +, = cc- (59)

On the plane e1Y 2 2 - E2Y12 = 0 which intersects the Oy 1 1 axis

= c2E8 c=e1 (60)

On the plane e2 Yll - el112 = 0 which intersects the 07 2 2 axis

I, c1 ce ., (61)

Comparing the values (59), (60) and (61), we see that /79
I takes on the greatest values on the plane yl2 = 0. If this plane

is not in the feasible region, selecting the smallest possible

Y12 is optimal.

It is of interest to study the behavior of the basic model

system (52) at points on the edge OA on the boundary of the

stability region. At these points

8T 1 2 2; 22 T12-
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Substituting these values in (52) we obtain:

dNi N,
=- N e - T-N + N) (62)

In this case we have a set of stationary points which lie
on the line

;V- = 2 e 2
T2 1, (63)

and all of them are stable. The equation of the trajectory in
phase space (N1 , N2 ) can be written in the form

N l = cNM".

The phase portrait of system (62) is plotted in Fig. 27.

I. N 1= 8 N,
Tu

II. N, = cNM'.

The function I takes on the following values on the line (63): /80

S(64)R(1)= C 2 2 c, 1 * (64)

If c1 2 <2 c2c 1 , then max I(N1 ) is attained when N 1 = 0, and it is

equal to

ec2e

Since on OA e 1 f2e
Tl2 Tia ' T "

If c1l 2>c 2 el
, then max I(N 1) is attained when max,;i~= .

Ta
It is equal to

86= cle
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Since on OA _82 _; CiP,

Fig. 27. Phase portrait of

system (62)

2 Explanation in text

Fig. 28. Feasible region 0 for
the two components "predator-

Yi- n prey" system

Fig. 27 Fig. 28

Thus the optimal value of I on OA coincides with the value of I on
one of the planes, which intersect the line OA.

The values of I increase (hyperbolically) as the point under
consideration approaches either the edge 0y 1 1 or the edge 07 2 2 . In

the process either the number of the first species or the number of
the second species increases. To which edge is it "more advantag-
eous to move? If the first species is more "valuable" (I <2 I2

ll 22
then we should move to the edge 0Y 2 2, if the second species is

more ~'.valuable" (I > I ) we should move to the edge 0y 1 1.
11 Y22

In either case the optimal policy is a reduction in the inter-
specific competition coefficient yl2 = Y21 and an increase in the

size of the more "valuable" species which is obtained by decreasing
the corresponding intraspecific competition coefficient.

Let us return to the BGC of the "predator-prey" type

( 2 <10, 2 1< 0). We will determine the feasible region n. It

will lie in the positive octant, and it will contain all points
which lie above the plane e1 Y1 2 = - e2Y 1 1 . This region is plotted

in Fig. 28.

We have shown above that no point exists in the region 0 at
which I takes on a maximum value. Consequently, the maximum value
of I is attained on the boundary 0, and the point (Y 1, Y2' Y 2 )

which interests us lies in a small neighborhood of the
boundary point. Therefore, as in the first case,we will include in
the feasible region also the boundary of h0 (excluding only those
points where I - -, in the given case the 0y2 2 axis).

We will calculate the values of I on the planes by which n
is bounded. On the plane y11 = 0:
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On the plane y2 2 = 0: /81

2 2 .13 TiU (66)

On the plane e 1 2 + 2Yll = 0:

1 T= - cI. (67)

Since e2<0, it follows from a comparison of Il, 12 and 13

that

l>12, 11 > .

By examining (65), we see that I takes on the maximum value for the

smallest possible y1 2 = - Y21 and the largest possible Y2 2

In either case the optimal policy is the greatest possible in-
crease in the number of "prey" obtained both from reducing their
intraspecific competition coefficient, and from reducing the rela-
tive number of "predators," which takes place when Y22 is increased

and y12 is decreased. The quantity y2 2 characterizes the intra-

specific competition among the "predators" and Y12 the "hunter capac-

ity" of the "predator" and the nutrient value of the "prey."

The result is rather paradoxical, but it is easily explained
if we recall the type of feedback which relates the number of "preda-
tors" and "prey." In practice we never reach the boundary points of
0, although we may be close. A certain non-zero number of "preda-
tors" corresponds to this. By applying our optimal policy and by
increasing the number of "prey" we also increase the number of
"predators." The result is a rather peculiar conflict situation,
since in order to increase the number of "prey" we must decrease
the number of "predators," and on the other hand the growth in the
number of "prey" is necessarily accompanied by a growth in the num-
ber of "predators."

It is clear from these examples that by applying the optimal
policy to the formation of a BGC with an optimal trophic struc-
ture which has maximum "value" brings us to the boundary of the
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stability region. The "most valuable" BGC from our point of view
is at the same time also the most unstable BGC. We do not think
that nature when it creates existing BGC uses the criterion of
their "maximum value";~rather conversely, natural BGC are the most
stable systems, but consequently also objects which are extremely
difficult to control.

7. Optimal Values of the Competitive Ability Coefficients /82

Is it possible to obtain any general results for the op-
timal values of the coefficients y .? It turns out that it is.

Let us assume that in the matrix F there is a j-th column (row)
such that

det r= Y TM "0,

where Mii is the cofactor of the element y , and where for at

least one pair (k,l) ykl 3 0, Mkl ? 0. This is possible, since we

assume that system (32) has a unique solution.

Since

a n

1=1 (68)

i=1

and e. 0, when detr - 0 and Mij # 0, I ~ m. A necessary and suf-

ficient condition that detr - O is that those ykl tend to zero for

which Mkl # O(k = 1, 2, . . ., n). If by selecting the yij the

value of the determinant can be made arbitrarily close to zero,
then the criterion function I can assume values which are arbitrar-
ily large. In other words one possible optimal policy consists
of the following:

1) Either we select one most "valuable" species and we de-
crease for it as much as possible both the intraspecific competition
and the competitive pressure on it by other species (the elements
of the row of the matrix F which corresponds to the species num-

ber must be made as small as possible in absolute value).
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2) Or for some selected species we must try to reduce

as much as possible competition within the species and the com-

petitive pressure of this species on other species, i.e., to iso-

late the species from one another as much as possible (this cor-
responds to a decrease in the absolute value of the elements of
the column which was selected in r).

It cannot be said that this is the only possible policy; it
is very probable that also other policies exist. For this it is
necessary that such Yij exist for which F is near-singular, i.e.,

detr = p, where P>0 is a small number.

The result which we obtained can also be interpreted as fol-
lows: the optimal policy in either case is the creation of condi-
tions under which the competition within the species is reduced to
a minimum, and the species are isolated from one another as much
as possible, i.e., we create a structure for which the overlap of
the ecological niches is minimal. Under certain conditions such /83
a structure will have little stability. It is very tempting to
formulate the following proposition: the most valuable (in the
sense of our definition) structures are the least stable structures.
However, this statement cannot be applied universally, opposite
situations can also exist. The following two sections are de-
voted to some extent to a study of these problems.

8. Stability and the Maximum Utility Criterion

We will show in this paragraph on the example of two competing
species how the stability of the BGC and its maximum value are re-
lated.

The simplicity of the formulation allows us to demonstrate its
solution very clearly on geometric examples.

Suppose that we are given a BGC, consisting of two species
which compete for the same food (52). We assume that the coef-
ficients y 1  Y1 2 Y2 1, Y2 2 are already given. In the plane

IN1 , N2 ) we will consider the family of lines

I N 2 = e- T" NToi Tv.

II N 2 = 8e T2 N (69)
Tn T22

III N 2 = I - N1
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Let .17 < A?7Y11; <212<IVY2 Then the point A in Fig. 29, a,b is
stable, and the points B and C are not stable. Ignoring for the
moment stability and instability we will see at which of them the
criterion function I = c1N1 + c2N2  is a maximum. Geometrically

this is equivalent to selecting from among the three lines from
the family III which pass through these points one line, such that
the segment which it cuts off on the ON2 axis is as.'large as pos-

sible, i.e., the quantity I/c2 is a maximum and consequently also

the quantity I is a maximum (when c2 is fixed). It is easily seen
that if

T12 c, (70)

the unknown line passes through the point Aand max I = IA (see

Fig. 29, a). If

1< 2(71)

we must select the line which passes through the point B and
max I = IB (see Fig. 29, b). Finally, if

max I = I

Thus, until condition (70), is satisfied, the requirements that /84
the BGC be stable and that it have maximum value do not contradict
one another. When (70) is not satisfied (either (71) or (72) holds)
the maximum of the criterion function is attained for an unstable
solution, and the requirements of stability and maximum value
contradict one another.

How will the graphs change in Fig. 29, a when the parameters

yij are varied? If we decrease the quantities y1 2 and Y21 which

describe the interspecific competition, the point A which remains
as before stable, will move farther away from the coordinate ori-
gin. In the process I will also increase (Fig. 30). But it will
not increase without limit: the maximum value is

IA = IA. ce1
Tu T91
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(see Section 6). It is attained when Y1 2 =21 = 0, i.e., when

the ecological niches of these two species do not overlap. We note

that in this limiting case inequality (70) is satisfied for any

strictly positive cl and c2.

Fig. 29. Stable state
of a system consisting
of two competing spe-
cies and the values of
the criterion function

a . for various relations

C / between the coefficients
-Y /ij and the costs c1

-- m and c

! ' l; a--Yll/Y12>c/c2
e,/A /c7 L E Y21/Y22, b--cl/c 2 <

Y21/22 , A-stable

stationary point, B,C-un-
stable stationary points

The criterion function increases also when the quantities

Yll and Y22 decrease (Fig. 31). But sooner or later e1 Y21> 2Y 11

or :1Y22< E2Y12 or both of these inequalities will be satisfied

simultaneously. We will consider the latter case. Here the points

B" and C" will be stable and the point A" will be unstable. This

corresponds to one of the species dying out, and consequently to

degeneration of the BGC. Characteristically because of the con-

cavity of OB"A"C", the maximum of I will be attained at B" or at

C" and never at A", so that when the BGC is degenerate, the maxi-

mum is attained only on stable solutions. If c1 Y1 1> c2Y 2 2 , then

max I = I0", if y1 1 <<c 2 2 2, then max I = Ic" (see section 6). A

further decrease in Yll or Y22 leads to an unbounded increase in

the criterion function I.

Generalizing everything that was said above,we reach conclu- /85

sions which are analogous to those made in Section 6. In either

case the optimal policy consists of reducing the interspecific and

intraspecific competition coefficients. If a reduced interspecific

interaction and greater isolation of ecological niches does not

reduce the stability of the BGC (or in a certain sense even in-

creases it, leading to the result that for any cost ratios a non-

degenerate BGC with a stable non-zero state for both species is

most valuable), the reduced intraspecific competition even though
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Fig. 30 Fig. 31

Fig. 30. Change in the position of the stable point and the
value of the criterion function as the intraspecific competition
coefficient decreases

Fig. 31. Change in the position of the stable point, stability
loss, and the change in the criterion function as the inter-
specific competition coefficient decreases

it leads to a greater value of the BGC, leads at the same time, to
a loss of stability of the BGC and to its degeneracy. The optimal
policy is to leave only one species, but this contradicts the "non-
deterioration" policy of the BGC as a whole. The'simultaneous
application of two such types of decisions makes it possible to
use both species, i.e., preserve the BGC, but as shown in Section
6, this brings the system sufficiently close to the stability
boundary.

9. Maximally Stable Biosystems

Situations may occur in which we are not interested in the
value of the BGC, but what is necessary is maximum stability of
the entire system. When such requirements are made, it is assumed
implicitly, that the concept of a "maximally stable BGC" is in-
tuitively clear, and requires no further study. However, this
is not the case at all. Even in stability theory and in applied
disciplines related to it in one.way or another a variety of dif-
ferent definitions of stability'exist (Letov, 1962). Therefore,
the selection- of the stability criterion for a system such as a
BGC is a very difficult problem- We will demonstrate on*a suf-
ficiently, simple example oftwo competing species several possible
stability criteria for such a system and we will shpw how they are /86
interrelated. The form of these criteria will be demonstrated by
the type of disturbances acting on the system.

1. Suppose that the BGC consisting of two species competing
for the same food is described by the system (52). The main type
of disturbances acting on the BGC will be the perturbations in the
parameters Y1 1, Y1 2 ' Y21 Y2 2. It is clear that when the perturba-
tions are sufficiently large, the system may leave the stability
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region, and one of the species will perish. We will assume that

the perturbations in all parameters are equally 
probable. When

12 = 21 the stability region coincides with the feasible region

0 plotted in Fig. 26. The farther the point whose parameters are

selected for the unknowns lies from the planes e1Y 2 2 -e 2y1 1=0, e2Y1 1

-E Y21 = Othe smaller the probability that the perturbations of

the parameters will make the system unstable. We assume here im-

plicitly that the probability of the perturbation is inversely pro-

portional to its magnitude. But there is a constraint given by

the species in the BGC itself: 71Y 0. Consequently, the locus

of the points which are farthest from the planes and which satis-

fy this constraint must lie on the plane Y1 2 = 0. Without dwel-

ling on details we will see immediately that the locus

sought may be a line on which the centers of all 
halfspheres in-

scribed in the trihedral angle lie (Fig. 32). The coordinates of

the center of the halfsphere of the largest possible radius are

the parameters sought. If the quantity Y1 2 is bounded below, so

that 12 P> 0 ,then the centers of the halfspheres must lie in

the plane y1 2 = p.

Thus, when the parameters are perturbed, which is equivalent

to disturbances of the environment, a system in which the species

are most isolated from one another is the most stable system.

Clearly this is a natural result for two species which compete

for food. If the species are related by relations of the "preda-

tor-prey" type,it can be shown that an increase in the isolation

of the species leads to decreased stability.

rn
Fig. 32. Halfspheres inscribed in tri-

hedral angle in the feasible region 0.

A 0 0', 0" centers of these halfspheres

We will construct the phase portrait fr a system consistingtof
two coexisting species (Fig. 33, a, b). The inequalities which

determine the stability are related to the length of the BD and

CF segments. It is clear that the longer the seg-

ments, the less probable a situation in which OB>OD or OC>OF,

or both inequalities are satisfied simultaneously.
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Fig. 33. Various stability /87
criteria:
a-phase portrait of a system con-
sisting of two competing species.

IC The length of the segments BD
and CF, and also the difference

o , between the angles aI and a

S___- characterize the stability of
C / \p the system; b--stability criter-

ion, the quantity p=OA. However,
S' " 8 - if for a corresponding change

N j 'Y 6in the coefficients y.iBD in-

creases to B'D', and CF to C'F',
p decreases to p = OA'. Thus,
an increase in the stability by
one criterion can be accompanied
by a decrease by the other.

Therefore, these requirements must somehow be reflected in
the stability criterion by the parameters. The form of the criter-
ion is determined to a large extent by the metric we use. We will
give a number of possible criteria. We assume that the stability
conditions' EIy > eI 1; ea> e. are satisfied:

a) The parameters of the system which take into account
all constraints must be selected in such a way that the quantity

S= V(BD)2+(CF)2= 6 +(- ; (73)

is a maximum.

b) The parameters of the system must be selected in
such a way that

max min {BD, CF}= max min /e e. - (74)
11, Y11. Y,2, YZE, T. , (74)Y

where 0 is some feasible region.

c) We introduce the following notation:

al = arctg ; a = arctg a, a 0, .
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Then still another stability criterion can be defined as

max {a - a11). (75)

2. Suppose that the BGC is in the stationary.state (N,I' N2)
'

where

TN u Tf - ' ' (76)
Tu - Tial _ Tu1IT - TnTa

Suppose that the disturbances are such that as a result of their /88

action the equilibrium stationary sizes change instantaneously,
where the number of one or both species can be zero after which the

BGC can no longer leave this state (the state is not recurrent).

In Fig. 33, a this means that the point A can either be on the ON 1

axis or on ON 2 . If the deviations both from N 1 and from N2 are

equally probable, the requirement for maximum stability for such

type of perturbations reduces to the following: the point A must

be as far as possible from ON 1 , and from ON 2, and the stability

conditions must be not be violated. The equiprobable assumption

implies that point A must lie on the line which passes through the

coordinate origin at a 450 angle, i.e.,

eS (rT2 + r 22) = es (Yru + T12)

and (77)

p =(N + (P1) 2 = 1 =

is a maximum (see Fig. 33, b). If we also require that at least

the stability margin in the parameters which is determined in accor-

dance with one of the criteria introduced above be not reduced, the

process of selecting the most stable BGC reduces to finding the
smallest possible Y1 2 and Y2 1 . As a result of this operation p

increases and the stability of the system to perturbations in the

stationary size levels increases, As in case 1, the most stable
system is a system in which the species are most isolated

from one another. On the other hand an increase in p due to a

decrease in the coefficients y11 and 722 can lead to loss of sta--

bility in the parameters and to a degenerate BGC. It can be
said that the criteria which were formulated for the two types of

perturbations under consideration are contradictory to some ex-
tent.

3. Finally we will formulate a third type of criterion
which will be based on the requirement that the perturbations
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be "corrected" in minimum time. Such criteria are widely used
in automatic control theory. If we denote by 6Ni = Ni - N i ,

i = 1,2, the deviations from the stationary state, then

6Ni = NioeL' ,

where the X. are the eigenvalues of the matrix
1

Ni nL i n- I i, =1, 2.

If the stability conditions are satisfied, Xi <0 (in a system con-

sisting of two competing species, the i are real). The converse

proposition is also valid. It is clear that the larger the ab-

solute value of X., the faster the perturbations are "cor-

rected" and the faster 6NCi 0, The character of the con- /89

vergence can be defined in various ways: either this is the fast-

est convergence to zero of all mean deviations, or it is the fast-

est convergence of the coordinate which is "corrected" most slowly,

etc. Various definitions lead to various ways of introducing the

metric and the norm, and as a result to various forms in which the

maximum stability criterion can be written.

For example, we can require

max min {(Il; i12 }. (78)
Tss. Y,. YIs. Yssi:

This criterion ensures the fastest decrease in the perturbation

which decreases most slowly. What does it lead to in the case of

two competing species? We will calculate the eigenvalues:

-%, = {-(T 1NY + T ,2NV2)- r- (Tj-r 22NV)2 4yr 21.\A1A.\ J. (79)

It follows from (78) and (79) that when we set up a system which

corrects most quickly the perturbations we must find

max {TiN 1 + -2 N2 - - T22 2)
2 + 4T,1 21 1 1,;

where N 1, N2 are determined from formula (76). It is easily seen
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that the expression to be maximized over the y. under the maxi-

mum symbol increases when the coefficients yij ecrease. In ad-

dition to this it can be shown that when det' = y11 22 - ,12Y21 0,

it takes on arbitrarily large values. Consequently the maximum
stability requirement in accordance with this criterion and maxi-
mum stability in the parameters are contradictory, so that a typi-
cal conflict situation arises. We note that in the given case the
policy of selecting the coefficients in accordance with such maxi-
mum stability criterion and the maximum cost criterion coincide.

The reader probably noted already the cursory and somewhat
disconnected presentation in this chapter. Many interestingProb-
lems which deal directly with this theme were not touched on.
Often, for the sake of clarity, we sacrificed generality and rigor
of the presentation. To some extent this was justified by the fact
that in the quest for generality we would have to increase con-
siderably the bulk of this chapter. A whole host of problems which
are close in the manner in which the decisions are made cannot be
solved by the methods given here. Their presentation would vio-
late the unity of the chapter. For example, V. S. Ten solved the
very interesting problem of the "predator"-polyphage feeding
conditions. But the methods which he uses are methods of queuing
theory and they are not along the general lines of our book.
Therefore, we will not present this problem.

When we discussed the general formulations of the problems /90
we deliberately did not make them concrete, the same can also be
said about simplified problem models. If we so desire we can
"apply" these models to concrete situations by selecting the ap-
propriate coefficients.

In conclusion we shall dwell on the biological aspects of
these problems, on the possibility of making such type of de-
cision. We note that the results which we obtained, despite their
somewhat unusual formulation, have been known and used widely in
practice for a long time. In fact, the usual type of agro-
coenosis is a monoculture which is isolated in various ways from
the species which act on it. If several species are used in
agrocoenosis, they are related to one another either by relations
of the "predator-prey" type, by symbiotic relations, or their
ecological niches are sufficiently isolated from one another.

The best way of acting on the BGC is by changing the external
environment, both its abiotic and biotic parts. In fact, this
determines the change in the quantities which characterize this envi-
ronment, the competitive ability coefficients. How can it be
changed? For the time being, evidently by changing the BGC
structure, which is determined both by the structural diagram, the
graph, and by the effectiveness with which the arcs of the trophic
chains operate. The magnitudes of the flows on the given
structures.
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The effectiveness of the operation is determined by the

specific characteristics of the dominant species and the char-

acter of the interrelations among them. These characteristics de-

pend not,only on the general parameters of the environment (climate,

geomorphology, etc.), but also on the specific parameters of a

concrete biotope (the structure of the soil, its chemical composi-

tion, etc.), which can already be regulated given the contemporary

level of agrobiotechnology.

The most real form of control under contemporary conditions is

regulating the number of existing species, and acclimatization 
of

new species, i.e., changing the BGC structure. Actions of this

type are also used rather widely now, however, without taking into

account the consequences d their application. When we formulated

the problem,we already attempted to study the entire BGC system

as a whole, taking into account the interrelations among all species

making up the BGC. We note that taking into account the interre-

lations among all species is not equivalent at all to a full de-

scription. Only the dominant species, or species which are impor-

tant in some other respect, are isolated and described more or less

completely, all remaining species are averaged in some 
sensible

way, and the model includes only these averaged parameters.

CHAP. VI. OPTIMIZATION PROBLEMS WHICH TAKE INTO ACCOUNT THE AGE /91

STRUCTURE, VARIOUS SIZES OF THE INDIVIDUALS AND OTHER

FACTORS

1. Taking Into Account the Age Structure in Biogeocoenosis

Models

Until now we used for the phase variables when we described

the BGC the values of the numbers (biomasses) of the species in it.

We naturally assumed complete homogeneity of the individuals with-

in the population of one species. The same quantities were also

included in the solution of optimization problems.

But when we formulate optimization problems of a certain

type, (for example, when only individuals of a certain age are

caught, or when individuals of various sizes are valued in 
dif-

ferent ways, etc.), it is necessary to take into account the char-

acter of the distribution of individuals of one species by certain

characteristics, age, size, etc.

Suppose that the populations of various species which make up

the BGC consist of individuals of different ages. What will be

the model of such a system?

The most general model (46) which was given in Section 1 of

the preceding chapter made allowance for various age groups in 
the

populations of various species. Each age group was characterized
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by its number and was in fact considered as a separate species with
its own competitive ability coefficients. This model was
discrete-continuous, since the sizes of discrete age groups vary
continuously in time.

As an example of a discrete-continuous model we considered a
BGC of the "predator-prey" type in which the "predators" feed only
on adult "prey" individuals. If N1 is the number of young "prey,"

N2 is the number of adult sexually mature "prey" individuals and N3
is the number of "predators," then following Kostitzin we can write

dt = N, - ((. + m) N,
drtdN2  - mN, + aNj - ,NN, . (80)

dNa
-t = - e3 N 3 + N 2N: J

Here El is the growth coefficient of the "prey," m is their natural

mortality coefficient, a is a quantity which characterizes the prob-
ability that a young "prey" individual will reach the age of sexual
maturity, £e is the mortality coefficient for the "predator," y2 3, /92
Y32 are coeficients which characterize the competitive relations

among the "predators" and "prey."

System (80) has the stationary point

N, = = ! _ V _; (z=+m)
(a + m)ra32 T3 (a+ m) T23

If the "prey" is highly fertile (el is large) and its young indi-

viduals are sufficiently viable, so that the inequality aei>m(m+a),
is satisfied, the state characterized by the point (N1, N2 , N3) is
stable. If the mortality of the "predators" is sufficiently high,so that

(m + 2) fI - m(m+ )1

the stationary state (80) is a focus, and the number of "predators"
and "prey" perform damped oscillations about this point. If the
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mortality of the "prey" is high, so that

e <m (m + a),

both species die out.

It is easily seen that the problem of collecting the yield in

system (80) is solved in exactly the same way as in a system con-

sisting of three different species which are not divided into age

groups. But the difficulties connected with the solution of the

problem increase sharply if a large number of age groups must be

taken into account since the dimensionality of the problem in-

creases.

A natural generalization of the discrete-continuous model is

a model in which both time and age are considered as continuous

variables (continuous model). We will give an example of such a

model (Foerster, 1959; Ginzburg, 1968). Suppose that a population

of some species exists in an environment with constant external

conditions. By N(x,t) we will denote the number of individuals

whose age,at the instant t, is equal to x. Then the number of indi-

viduals of all ages is defined as

(t)= N (x, t) dx
0

(when we integrate we also take into account individuals whose

age is "infinite," but this is merely a formality which has no ef-

fect on the results). Thus, N(x,t) can be considered as the pop-
ulation "age density." We will introduce the following notation:

n(x) is the natality coefficient for individuals of age x, m(x) is

the natural mortality coefficient for individuals of age x, (x,y)

is a coefficient which characterizes the competition between indi- /93

viduals of ages x and y.

Without dwelling on details of the derivation we write the

equation for the age density:

ONN m Lx(x) + (, y)y, dy] N;

0

N(x, 0)=g(x).
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Integrating (81) with respect to x and using the mean value theor-

em, we obtain:

dN
= [n( &)-m( TV)-T(] i 1)NI. (82)

Here n(51), m( 2 ) are values which were taken at some point xE[0,oob

Y( 3 1l ) are values which were taken at some point of the region:

xe[O,. 0; yeO 10, ool; N2o = g(x)dx.

Equation (82) is a typical logistic equation, since the en-
tire population size changes in accordance with the logistic law.

2. Stationary Collection of the Yield in a Population Con-
sisting of Two Age Groups

Suppose we are given a BGC consisting of the population
and the surrounding environment. All individuals in the population
are divided into two age groups: young individuals who did not
reach sexual maturity (N1 ) and adult (N2 ) mature individuals. We will

assume that there is no competition among the adult and young
individuals, and that there is no competition within the young
group, a situation which is characteristic of large mammals (for ex-

ample, among insects the situation is reversed: maximum competitive
struggle occurs in the larva stage). Under these assumptions the
model of such a system can be written in the form

dN
-= eN, - (a + m) N,

dN2  (83)dt - m 2N 2 aNL - ,

Here El is the natality coefficient, m 1 and m 2 are the natural mor-

tality coefficients of the young and adult individuals, a is a
coefficient which characterizes the probability that the young in-
dividuals will reach sexual maturity. This system has the sta- /94
tionary point

8 ei2- in, (a+mi)]N, =I--M2 (Ot+ ml) (84)

e102-ms(2+m) (84)
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The point (N1, N2 ) is stable if 6la>m2 (0 + mi) (stable node).

Figure 34 shows the phase portrait of system. (83).

N , = - 81 N2

-II

Fig. 34. Phase portrait of system (83)

/ y Explanations in text.

It is easily seen that when the propagation rate is suffi-
ciently fast and the infant mortality is low and when the proba-
bility of reaching the reproductive age is sufficiently large, the
point A(N I , N2) will always lie in the positive quadrant and it

will be stable.

As in Chapter IV, we will here formulate the problem of the
stationary collection of the yield with the additional "nondeter-
ioration" conditions for the BGC. The yield collection step is
considered to be sufficiently small. In other words we must de-
termine

= max I,
NEa

where

I = l [8e1N 2 - (a + mn) N 1 ] 4- c, (aN 1 - m 2 N2 - T22AN) (85)

in the region

eN-(a+mI)N1 >0
aNx - mi2 N., - 22N > 0. (86)
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Thus, since N1 enters I linearly, the maximum value must be reached

on the boundary of 0 on the line

N N= - N 2,

I= +mi (•[ - mn (a+ mi)- r (a+m )N2 1. (87)

The maximum of (87) on N2 is attained at the point

* aic - m ( mi)
= 22(a ni) 2

and it is equal to

c [e a - ln (3E -L m1i) 2

4 ( (88)

On the parabola /95

N1 =-LWI V + -N 2

I i-N [ae, - m. (a + mi) - T22 ( + mi) .21. (89)

The maximum of (89) on N2 is attained at the same point
* 1

N2 N2 at which

cI= el --.m2 (2 + m)l -

4T2(2- M- ).2 (90)

Comparing (88) and (90), we see that when

ac > c, (a + m,) (91)

I takes on the mximum at the point B (see Fig. 34) with the
coordinates

N N2 = ' (92)
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and when

ac2 < c, (a + mi) -

at the point C with the coordinates

'Vi T22 (m -mi).' + til (7( + ml)

If the ratio of the costs is such that inequality (91) holds,

the optimal yield collection process consists of the following:

the sizes of both age groups are held on the constant 
levels which

are determined by the coordinates of the point B, and the yield

which is collected is the increment in the number of 
adult indi-

viduals. Since the point B is not a stationary point of the sys-

tem, the number of adult individuals increases in the 
time which is

equal to one step of the process (the number 
of young individuals

remains unchanged). This increment is collected as the yield.

If inequality (92) holds, the optimal process is the 
process

for which the sizes of both groups are held on the constant 
levels

determined by the coordinates of the point C, and only 
the incre-

ment in the young individuals is collected.

Such an alternative character of the decision is obviously

connected with the selection of a model which is linear in N 1 .

If we assume that also within the young group competition 
ex-

ists, then we can hope that an optimal point 
(N1*, N2 ) which lies

within the feasible region exists. In this case we will collect

as the yield the increment in the number of both age groups.

3. Optimal Age Distributions. Possible Formulations /96

of the Problems.

When the age factor is taken into account, the state of the

population is described not by one 
number, the population

size at a given instant of time, but by the entire distribution,

which also varies over time. The selection of the age distribution

can be one of the decision parameters. In addition to this also

other decisions lead to the formation of a definite age 
distribu-

tion, which we will call optimal if the decision made is optimal.

We will give a small example related to the optimal catch

problem. Suppose that we are given a certain ichthyocoenosis.

If the individuals of the coenosis are not caught, then a sta-

tionary age distribution is formed in it. As soon as fishing
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begins, this distribution changes: if the same fishing policy is
used long enough, the new distribution can also become stationary./
Naturally to each policy will corespond its own distribution. The'
optimality criterion is usually related to the differences among
the new and old types of distributions,for example, the maximum
biomass criterion for the biomass caught for forming and main-
taining the new distribution. To the maximum of this criterion
corresponds its own age distribution which will be optimal for the
given problem.

What will the problem of optimizing the process of collecting
the yield for the system described by equations (81) look like?
Analogously as in Chapter II, the time interval [O,T] in which the
collection takes place is broken up into n equal parts by the points
t i = h, 2h, . . ., nh = T. In each step an amount of biomass of

all ages is removed from the population which is equal to

Sk(x T(x)N (x)dx; i= I, 2,..., n.
0

Here O ki(x)l1, i = 1,2, . . ., n are admissible decisions. Then

during the transition from one step to another

N1+ (x) = NT (x) [1 - k (x)l, (93)

where the index (-) denotes the state of the system to the left and
the index (+) to the right of ti . In order to explain how the

state of the system changes during the transition from ti to t.i+

(in one step), we must solve equations (81). If we can find
a solution then

NT (x)= N (ti 1 , x) = P {NV (x)} = P {N (ti, x)}. (94)

Suppose that we are given the function ci(x) the cost per unit

biomass or per one individual of age x. We assume for simplicity
that c (x) = c(x) is independent of i. The the return in one
step of the process is equal to

g = Sc(x)ki(x)N(x)dx; i= 1,2,...,n. (95) /970

The total return is the sum of returns over all n steps. We intro-
duce the return function fi[N(x)], which is equal to the total
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return after i collection steps, assuming that in the preceding
steps optimal decisions were made. In the given case the return

function is a functional of N(x). Applying Bellman's optimality

principle we obtain

(N)= max Sc(x) k(x)N(x) dx;
so<w<1 0 (96)

f (N) = max S c (x)k(x) N (x)dx + fi iP [(1 - k (x)) N(x)}1.

Here N(x) = N 1 (x) is the age distribution in the population at the

instant when collection takes place for the first time.

P [. . .] is the transition operator in one step (94). The

solution of this functional equation gives the unknown optimal

decisions. Unfortunately, such a problem is very complex. One of

the possible approaches to its solution is to replace the contin-

uous distributions by discrete distributions with a small number of

points. This is analogous to formulating the optimality problem

for models with several age groups. The dimension of the problem

will be equal to the number of these groups.

In addition to such an approach to the problem, its solution

can be simplified considerably if we assume that the collection

process is stationary (in the theory of dynamic programming, said

to be infinite, since n - m). In this case we seek the

maximum of the function

max c (x) ki (x) Ni (x) dx.

The basic functional equation has the form:

f[N(x)]= max max ic(x)N(x)dx, f {P[(1-- k(x)) . (x)]j=

00 (97)

max ic (x) N (x)dx, max f(P [(1 - k (x)) ."(x)] .
max I 

Even though in this problem we must find one f(N), instead of a

sequence of functionals fi(N), the problem did not become simpler.

We can proceed somewhat differently, and consider the sta- /98

tionary process as a limit determined by equations (96) as n -
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and not directly from the form of the return function as we did
above. Then:

f(N)= maxt c(x)k(x)N(x)dx+f{P[(-k(x))N(x)]}. (98)

If the operator P has a convenient structure, then the method of
successive approximations naturally suggests itself for the solu-
tion of (98). In many concrete cases determining the convergence
of this method will not be apparently a very difficult problem.

The optimum decision k(x) which is found from solving (98)
has the property that the initial age distribution altered by its
application is again restored at the next collection instant.
In the solution all the information about the dynamics of the age
composition is used. If the solution of system (81) is unique,
then for a fixed step we obtain the unique initial age distribu-
tion which ensures that the process is stationary. However, the
requirement that the initial distribution be completely restored
is too strong. In a real situation it is fully adequate if the
total population size or the number of certain age groups do not
decrease (for example, the number of newborn individuals). These
requirements may be satisfied, but the age distribution itself
need not be restored at the next collection, it may vary from step
to step so that we cannot speak here about strict stationarity.
But on the average the process will be stationary. To find the
optimal decision, it suffices if information is available about
some average behavior of the system. The new problem will be
formulated as follows: in each step of the process we seek a
decision 0(k(x)<1I which will yield the maximum return

g(N-, k)= (x)k (x)N-(x)dx. (99)
0

Here N-(x) is the initial age distribution to which the decision
k(x) is applied. It is clear that these distributions can vary x
the current and successive steps, so that also the decision
k[N(x)] may be different. In fact we replaced the optimality prin-
ciple by the local optimality requirement, and in each step we
solve an optimality problem which is independent of the preceding
step.

Let us consider (99). It is easily seen that for any
N (x) max g(N-,k) is attained when k(x) = i, i.e., the collection

04<kl
process terminates in the first step. This is unwise, since it
is more convenient to retain a certain part of the population
so that it can be reproduced at the instant when the next col- /99
lection takes place.
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If we retain a certain total number ignoring age, then

N+(x)dx>co whenSk(x)N-(x)dx;Ao-co; Ao= N-(x)dx (100)

0 0 0

However, solutions can be obtained which will preserve 
the total

number, but which will leave individuals not capable 
of reproduc-

tion (because of age). Evidently another condition is needed which

takes into account this fact. Nevertheless, we may still use

(100), but with an appropriately selected constant cO (we

will describe later one of the ways of selecting this constant).

Another condition may be a lower bound on the number of newly

born individuals in the population, since when a certain 
number of

these is maintained in the population, it is possible to ensure that

also the total population size does.not decrease. This condition

can be written in the form N+(0)> c I , or using (81) and (93)

Sk(x)n(x)N-(x)dx~ A-c.; A= EN-(x)dx. (101)
0 0

Here n(x) is the natality coefficient.

If the population is in the logarithmic growth phase (the

effect of the term with y(x,y) in (81) is small), we can take for

the condition a lower bound on the rate of growth, so that

in (x)- m (x)l N+ (x) dx > c-;

or

Sin (x) - m (x) ] k (x) N- (x) dx Aa - c;

(102)
A, [n (x) - m (x)] N- (x) dx.

In all these inequalities the constants A.i - ci, i = 0, 1,,2 must

be nonnegative. Also other constraints may exist, for example,

if certain costs are incurred in the fishing process, it is natur-

al to assume that the total cost in one step must not exceed a
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certain level, so that

Sz (x) k (x) V- (x) dx ca. (103)
0

Here z(x) are the costs incurred in catching one individual of age
X.

If we now seek the decision maximizing g(N,k) with one or /100
several constraints (100) - (103), we obtain a typical infinite
dimensional linear programming problem. One powerful method used
for solving such problems is the Neyman-Pearson lemma (Bellman,
Glicksberg, Gross, 1962). The optimum decision is a relay func-
tion, i.e., a function which is equal to one on some segmients of
the halfline 0<xm, and to zero at almost all remaining points.

It is possible to formulate problems for which the decision
k(x) is already given (below we will study this problem in detail)
and we must find the initial age distribution which "fits" in the
best manner the given decision. Mathematically this problem is
completely equivalent to the previous problem with the difference
that the unknown is the distribution N-(x).

In another formulation the decision is introduced as a term
in the mortality coefficient in equations (81). In this case the
collection process itself is no longer discrete, the yield is col-
lected continuously. Leaving aside the question of the correctness
of such a description of the yield collection (fishing) process
(we will study it in Chap. VII), we note that we again obtain a
linear programming problem with inequality constraints (all or some
of the constraints in (100 - 103); there can also be other con-
straints) and one equality constraint of the type given in sys-
tem (81).

Thus we arrive at the point where the problem decomposes into
a series of linear programming problems, where the solution of one
problem serves as the initial input for the next problem. Gener-
ally weshould not expect that the solution obtained will be sta-
tionary in the most rigorous sense of this term. However, we can
expect that as a result of solving successively such problems when
the constraints on the number of individuals are satisfied, we
will obtain conditions which can be called in some sense "station-
ary."

In conclusion we will give one way in which the constant c0
can be selected in inequality (100).

It was shown in Section 1 of this chapter that the total pop-
ulation size = varies in accordance with the logistic

' 5 N (x) dx
law. o
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But for such a model we fully solved the optimization problem

in Chapter II. The decision is different from zero if and only
if

= N+ (x ) d x  co. (104)

Here we wrote the old results in the notation which we used in this

chapter. We will now determine the quantities c and y. To do this

the function N(t) which was found from the solution of the averaged /101

equation (82) is approximated by the logistic curve (this can be

done since N(t) itself varies in accordance with the logistic law)_

and the parameter values obtained in the process are taken as the a

and y. In fact - and y are certain average values of the natality

and mortality functions and also of the competitive ability

function.

It can be shown that even if the inequality is satisfied with

a properly chosen constant we have nondecreasing sizes; how-

ever, the yield collection procedure will distort the initial age

distribution shifting it in the direction of the younger indivi-

duals and will decrease the mean age of the individuals in the pop-

ulation.

Many characteristics of individuals (for instance, size,
weight, the biomass used, etc.) depend directly on age. On the

other hand it is precisely these characteristics, not the age

which determine the productive value of the individual or even
the type of the decision used. For example, if fish are caught in

nets, the decision in this case will be as follows: there exists

a critical size of the individual which is determined by the di-

mension of the mesh which will catch all individuals whose size

is larger or equal to the critical size without catching the remain-

ing individuals. Here we have a typical example of a relay de-

cision, whose "switching" points depend on a parameter such as the

size. But since the size .is directly correlated with the age

of the individual, the problem can be formulated and solved in

terms of the age structure of the population.

In the same way as in the preceding chapter, we can here form-

ulate the problem of the "most valuable" population. It reduces to

choosing from among all stationary distributions N(x) which depend

on the function y(x,y) that distribution which maximizes the func-

tional

g(N)= Sc(x)Nx [, dxv dy,
00
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and to finding the corresponding y(x,y) which determines the

trophic structure for the given system.

4. Optimization of the Age Structure of a Herd

A very interesting optimization. problem for a model in which
the age structure of the population was taken into account was for-
mulated and solved by L. R. Ginzburg (Ginzburg, 1968). The concrete
model which was studied was the model of an artificially cultivated
population of aherd of large horned cattle.

For such system several types of optimization problem can be

proposed, but all these involve the selection of some
age distribution. The optimal policy for all such problems is the

planned slaughtering of individuals in various age groups.

When the problems are formulated, in addition to the distribu- /102
tion of individuals by age, the sex of the individuals must also
be taken into account. The system of equations for a population
consisting of both sexes has the form

d =- , (x) + (x. y)N(y, t)dy Nm
0

dNf r0
dN =-mr () + -, (x, y) N (U, ) dy] N

0

(105)
N (0, 1) = n, (x) N (x, y) dx "

0

N, (0, t) - n((x) N, (x, y) dx
0

N (x, t) = N, (x, t) + N1 (x, t)

Here

d a &
7F at TX-

The subscript "f" indicates that the parameter or the variable be-
longs to the female sex, and the subscript "m" indicates that it
belongs to the male sex. The natural assumption is made in the
model that the number of males in the population is adequate to
fertilize all females.

1. The first type of problems are problems in which the
optimal stationary age structure of the herd is determined. In this
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case the number of head does not increase. In utilizing the herd
two types of products are of value to us, milk and meat. It is

easily seen that the decisions which optimize one type of product

are by far not optimal for the other--we have a conflict situation.

We will make the following simplifying assumption:

a) we seek the stationary distribution

aNm _ ,
-= = 0;

jt o:

b) during reproduction the population is a ways in the

logarithmic growth phase, so that terms with N
2 and N in

the right members of (105) can be.ignored.

c) the number of individuals slaughtered is proportional
to their number, so that the decision consists of changing the

quantities mm and mf.

Under these assumptions the model system has the form: /103

dN. = _ I (x) + km (x)] N.m

dN
_ = - [m (x) + ki (x)] N

N.(0)= Tnm (x) N, (x) dx 
(106)

0

N, (0) = n, (x) N, (x) dx

Here km (x), kf(x) are admissible decisions which characterize the

quantity slaughtered.

Let vm(x) and v f(x) be the quantity of marketable meat from

males and females of age x, Z (x) be the milk production of cows

of age x, r(x) be the amount of milk consumed by calves of age

x, qm(x) and qf(x) be,the specific costs for maintaining one indi-

vidual of age x. Let cv and c1 be the unit costs for the meat

and milk products. Then the meat production per unit time is equal
to

113



S ) dx. (107)

The amount of marketable milk produced per unit time is equal to

L = cS 1 (x) N,(x) - r (x) [N (x) +N (x)]} dx. (108)
0

The total cost incurred in keeping up the herd is expressed by the
formula

Q= SIm(x) Nm (x) + q,(x)NV, (x)] dx° (109)
0

In addition to the purely biological constraints given by (106)
other constraints related to economic factors can also be given,
for example, if the fodder resources are limited the following
constraints can be imposed

Umi (x) N. (x)dx U:,,, i= 1, 2,..., s.
0

uti(x)N,(x)dx < Uti, = 1,2, ... , p.

Here umi and ufi is the amount of fodder of the i-th or j-th

type used by individuals of age x per unit time, and Umi and Ufj

are the available stock of the corresponding fodders. One cri- /104
terion which can be used in such a problem is maximizing the
profit

I = V + L - Q.

If in all the formulas given above the integrals are replaced by
finite sums and the derivatives by finite differences; this prob-
lem reduces to a typical linear programming problem (Dantzig,
1966).

We will give the results of the solution of the problem of
the stationary age structure of the herd (in %) with the maximum
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profit criterion, which is based on data from one of the Sovkhoz
(State Farms) in the Leningradskaya Oblast'.

Calves in Calves in
current previous Young
year year Heifers Cows Bulls

Existed in 1967 19.2 13.6 9.8 53.0 4.4

Calculated in ac-
cordance with the
maximum profit
criterion 16.1 10.0 6.1 59.8 8.0

The total increase in the profit for the optimal age struc-
ture is approximately 7%.

2. In the preceding problem it was assumed that all charac-
teristics of the herd do not depend on time. This is a very strong
constraint, since such characteristics as milk productivity
are highly seasonal, and even though the remaining characteristics
are less so, they nevertheless depend on time. Therefore, the
problem of optimizing the periodic age structure arises naturally.

When we formulate the problem we abandon assumption a), and
the problem becomes nonstationary. The basic equations of the
model have the same form as in (106), but the first two equations
must be written as

ONf, dN
O~N, at - [m, (x)+ k, (x)] N,

Certain constraints will depend on time. Exactly like the pre-
ceding problem, this problem reduces to a linear programming prob-
lem,but of large dimensionality. The criterion which is selected
is the maximum profit over the entire period. Since the period
selected is finite, the problem can be made discrete over time.
The values of the quantities which depend on time are taken at the
points at which the time interval is broken up, and the partial
derivatives with respect to time are replaced by finite differen-
ces, which use the values of the variables at the points at which
the interval was broken up.

3. Certain types of important problems are problems deal- /105
ing with dynamic decision prqcesses. How do such problems arise?
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Naturally the best state is the stationary or periodic age
distribution which maximizes profit per unit time or per period,
where the state of the system is such that it is fully restored
at the beginning of the next period. Such problems already arose
earlier when we were seeking optimal stationary yield collection
processes in the BGC with the condition that they do not "deter-
iorate." Also here we can impose conditions that the number of
individuals in some age group do not decrease (usually the repro-
ductive part of the herd which makes further reproduction possible
is preserved). Also other constraints of the "nondeterioration"
type can be considered. For example, the condition that
meat production should not decrease, due to certain planning
restrictions. The criterion which is selected is maximum
profit over the entire time interval under consideration.

This problem can be solved by dynamic programming methods.
But the linearity of the problem and also the decisions as well
as the constraints and the fact that the time interval is finite
make it possible to reduce the problem to a linear programming
problem.

It is natural that the results obtained from solving such
problems are very approximate because of the coarseness of the
initial model. Of course, it would also be desirable to take
into account the genetic laws which determine some of the in-
herited characteristics during the reproduction, and the feeding
regimen, which can be considered as a decision parameter, etc.
But in the process the increasing difficulties which arise in the
solution of such many-parameter problems are great, and the
solution itself becomes so untractable, that one can doubt its
usefulness.

5. Stationary Optimal Distributions

In preceeding paragraphs we already encountered problems in
which the assumption that the age distribution is stationary was
essential. However, many questions connected with their solu-
tion were not considered by us. We will fill this gap here on a
number of very simple examples.

Let c(x) i. Then the return will be the total number of
individuals caught:

g (NA, k) = k (x) .v- x) dx. (110)
0

As an additional condition, we will take a bound on the total size,
the inequality (100). In the end we obtain the following problem:

116



find k(x), which maximizes the function (110) subject to /106

the constraints

a) 0<k(x)< 1;

(111)
6) Sk(x)N-(x)dx N-(x)dx- co.

o 0

The initial distribution N(x) is assumed to be given.

If k(x) = 1, then in (111, b) c 0 = O. If c0> 0, for example,

the following k(x) can be the optimal decisions (Fig. 35, a)

0, if O(x<a, where a is determined from the condition:

k (x) = i (x)de (112)

1, if x>a.

It is clear that k(x) is not unique. For example, the decision
(Fig. 35, b):

0, if Oxal, where al is determined from the condition:
at

N- (x) dx = co - b;
0

k(x)= 1, if a,<x<a., where a is determined from the condition:

N- (x)dx = b;

0, if x>a2.

will also be optimal.

In general any decision of the form:

when x Eo (x), where the set E0 is determined from the

k(x)= condition NV-(x)dx=co-,
Ea

1,when-x= Eo(x), where 0 is the complement of E0

will be optimal.
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We will consider two successive stages in which a decision
of the type (113) is made. Suppose that in the first stage we
applied this decision for the given initial distribution. Then
the form of the initial distribution in the second stage will

depend essentially on the choice of the constant c 0 and the set

EO. Clearly, E0 must be chosen so that the remaining part of the

population will reproduce the greatest possible number of off-
springsat the next cillection, and that it will have the smallest
mortality. If the xEf(x) coincide with the ages of sexual /107
maturity and minimal mortality, then we can hardly expect a quick
restoration of the size at the next collection stage. Of
course, by appropriately choosing c we can ensure that the total
size will not decrease, but .a more flexible decision is

the selection of E0 .

Fig. 35. Possible types of
a 6 decisions.

/' K The shaded region below the
' _ , 7curve is the optimal age dis-

S. tribution, its area is exactly
- a equal to the minimal total ad-

missible population size.

This leads to the necessity of introducing still another
condition, or to replacing (111) by another more realistic con-
straint, for example (102). Since in this case the increment in
the population size is always bounded below by a positive con-
stant, the condition that the total population size does not de-
crease is satisfied automatically.

Suppose now in (81)dN/dt 0, the natality and mortality
functions depend only on x, and y(x,y) is small, so that the term
which describes the competition can be ignored. Then (81) will
be written in the form:

d - m (x) N(x); N (0) = n (x) N(x) d (114)
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For the decision we will introduce f(x), the rate at which the in-

dividuals of age x are caught. We will assume that the disturb-

ances introduced by the fishing process (yield collection) are

small, and that the process itself is equivalent to increasing the

mortality among individuals of the corresponding age. Then the

system with the decision will have the form

dN mN- f (x); N(0)= nNdx. (115)

We formulate the;problem of finding the f(x) which maximizes the

functional

g = c (x)f () d. (116)
0

As before we will assume that c(x) i. If there are no

constraints on f(x) this problem has no solution. But it is

completely natural to have a bound on f(x) so that /108

0 < f (x) < . (117)

In addition to this a bound can be imposed, for example, on the

total population size, so that

SN(x)dx Co. (118)
0

In contrast to the previous formulations, here we have a contin-

uous collection process. While in the transition from one step

to another the age distribution changed in jumps, now it is de-

formed continuously. The problem itself is formulated in such

a way that by solving it we obtain the stationary (in the most

rigorous sense of the word) age distribution.

Substituting the value of f which was found from (115)

in the functional,we obtain
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= - -mN dx= N()- o)-
o (119)

- mN dx = {n (x) - m (x)} NN (dx = g(N).
0 0

Here we made the very natural assumption that N(c) = 0.

We will now pass onto the bound for f. It follows from (117)
that

x- + mN s; J Z(120)

This differential inequality is equivalent to the ordinary in-
equality:

x

No(x) 1 m ( )d(d} 4( (121)
0

Here N (x) is a solution of system (114), i.e., the initial age
distribution. Since only nonnegative values of N(x) make sense,
letting

T= T(x) = No (0) 5 e d ,
0

we can write (121) in the form:

0 < N (x) < No (x). (122)

Finally, we have: find the N(x) which maximizes the functional /109

g (N) = {n (x) - m (x)} N (x) dx
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subject to the constraints (118) and (122). When the solution
to this problem is found, the unknown decision f(x) is determined
from (115). The optimal decision should be interpreted in the
sense that at each instant it maximizes the total increment in
the population size. To find the solution we shall use the
Neyman-Pearson lemma.

We will determine the sets E-(X), E(X), E+(X) as follows:

E-(Q)==x with the condition that n(x)-m(x)<X.;
E () = x, " " " " n(x) - m (x) = 2;

E () = x " " " " n (x) - m (x) > X.

We define X0 as follows: X0 is the greatest lower bound of the
set of all nonnegative X which satisfy the inequality

SNo(x) dx > c.
E+(Q)

The the set of optimal distributions N(x) is determined from the
relations:

NO(x) on E+(0);

N(x) = 0 on E-( 0 );
is an arbitrary function defined on E(X0 ) which
satisfies only conditions (118) and (122)

For the concrete form of the natality and mortality func-
tions plotted in Figs.. 36a, b, c, we constructed the optimal dis-
tribution which is used to obtain from (115) the optimal de-
cision f(x). But here one difficulty arises: since when f(x)
is determined we must differentiate the distribution N(x) which
is a discontinuous function, dN/dx is not defined at the points
of discontinuity, and consequently f(x) is undefined: One way of
overcoming this difficulty is "smoothing" the optimal distribution,
i.e., approximating the discontinuous N(x) by some continuous
function for which the derivative exists everywhere. Another way
is to introduce discrete.age groups and to consider as the decis-
ion no longer the function f(x) but the integral "+1

, = ! f (x) dx.
xi

where x, xi+ 1 are the boundaries of the age group. These can be
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chosen in such a way, that all integrals are finite and only the /110
number of individuals caught between ages xi to xi+ 1 have

meaning. We note that the values of f(x) and cpi which are ob-

tained must be nonnegative. In the contrary case we set

cp(x) O or cpi = 0. Figure 36, c shows the optimal decision

f(x) which corresponds to the distribution N(x), plotted in Fig.
36,b. N(x) was approximated by a continuous function.

n.m a Fig. 36. Solution of the optimization

n(z) problem for the continuous stationary
catch.

: z a--form of natality and mortality func-
tions; b--initial age distribution N(x);
optimal age distribution N(x) (thick
solid line); continuous approximation of
optimum distribution (thick dotted line),

curves m (mortality coefficient) and n

(natality coefficient) on a scale 10
i( rz)- J) tims larger than N O and N; c--catch func-

tion f(x). At the point x* where m(x) =
n(x), f(x*) = m. From a practical stand-

0 point this means that all individuals of
age x* must be caught.

6. Distribution by Dimension. Relay Decisions Related
to Specific Features of the Fishing Equipment. Con-
sideration of Other Factors.

It is clear that the size of an individual is closely re-
lated to its age. Usually the older the individual the greater
its size and biomass. Without dwelling now on various growth
models (Thompson, 1917; Kostitzin, 1937) we will assume that we
know the form of the function cp which describes the dependence
of the size Z of the individual on its age x, so that

i = (x). (123)

Then equations (81) will be written in the form:
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aLV + p. N -. m (1)+ T (1, y)N(y, t)dy N(1, t) (124)

N (a, t) = () N (1, t) dl; N (1, 0) = g (1)
a

where the natality, mortality, and competitive ability functions /1

no longer depend on the age of the individual but on its size.

Generally they can be given as functions of age, and recomputed,

using (123) into sizes (a is the size of newly born individuals
duals).

It can be seen from comparing (81) and (124), that the left
members of the first equations differ by the factor dcp/dx before
the term dN/dl, otherwise the equations are identical. We expect
that taking into account other factors will only slightly change
the terms which contain the derivatives, the structure of the eq-
uations themselves will remain unchanged.

Suppose that we are given m factors xl, x 2, . . ., xm, each

of which has its own distribution in the population. As a whole
the population is described by the multidimensional function
N(x1 , . . ., xm, t). Its meaning is the same as above, but now

instead of a single factor, age, we also have other factors (size,
fertility, etc.), and instead of a one-dimensional distribution a
multidimensional distribution. Naturally, the natality, mor-
tality and -competitive ability functions may also depend on- these
on these variables. Suppose that we are given these factors as
functions of time:

x = (t); x%=%(t; .. ,,x - "()

For example, if xl is age, pl(t) = t, since the age of an indi-

vidual is equal to the time it lives. If the age is not measured
in astronomical time units but in some other units, then

cl (t) 6 t, and it is given by a more complex function.

We define the total derivative N(xl, . . ., x, t) with re-

spect to time:

dN (xi .... xN mN Ox aN M aN d(t
dt at . " dx dt t Ox, dt (125)
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Then the equation which describes the multidimensional distribu-
tion of sizes by these factors is written in the form:

dN
- = - m(x,.... ,xm,t) + Y(x,...,xm, ** ... ,Um,)N xa (126)

X (x @ ,. ,* , Odm}N +R(N, x,... ,xm ,).

Here 0 is the region in which the xl, ., xm vary, dw = dy1
S. . dym, R(N, x1 , . ., Xm, t) is a function which describes

the increase in the population size due to birth, migration, etc.
Often the increment is given not in terms of a function in the
right member of the equation, but by a specially chosen boundary
condition. For example, if x1 is age, x 2 is the size of an in-

dividual, then R = 0 and the increment in the number of indivi- /112
duals is determined from the boundary conditions:

a) N (0, x, t)= Sn(x, x2, t) N (x, x,, t) dx;
0

b) N(x, a, t) = n (x, x , t) N (x., x2 , t)dx,.

In addition to the boundary conditions initial conditions must
also be given. Of course, in this example a two-dimensional
(more precisely three-dimensional since there is also a dependence
on t) problem can be reduced easily to a one-dimensional problem
because the size and age of an individual are related sufficient-
ly rigorously, and x2 = 2 (x1 ) is a known function. Neverthe-

less, such a technique of increasing the dimensionality of the
problem known as "invariant imbedding") can be useful. Having
found the solution of the problem in the entire region,
0(t) = [Xl, x 2 , t] we can easily obtain the solution which we need

by studying the behavior of N(xl, x2 , t) along the curve

x 2 = cP2 (x1).

If, for example, we take for x2 the seasonal cost of an in-

dividual which, of course, depends on the age, we will no longer
have such direct correlation. Inthis case the "invariant im-
bedding" method can yield good results. Since x 2 = c2 (xl' t),
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dx1  dx2  a2, a(O .x, =t; ; dt OXT

and (127)
dN ON L( 8N 2 ap2\ aON

Let us again return to the distribution by dimensions. It is
clear that if we know how to find the age distribution,
we can also find the distribution by dimensions. Therefore, all
problems related to this distribution can be reformulated in
terms of age distributions. In Section 3 of this chapter we con-
sidered the case when the specific features of the fishing equip-
ment (fishing by nets with a certain mesh size) determines the
type of decision. It represents a relay function with a single
"switching" point. Since the dimension is related to the age, in-
stead of the critical dimension 1 *, we can determine the critical
age x*. If the decision is defined by the quantity k(x), then

(x) = 0, for x<x';(128)

1, for x>x.

We no longer seek an optimizing function k(x) or f(x) but a num-
ber x which will maximize the functional

g(N, x') = c (x) N(x) dx; (129)x.

subject to certain constraints, or a sequence of numbers x.* which /113
1

maximize the sum:

G c (x)N7(x)dx. x (130)

All problems which were considered above are simplified
considerably.

But besides such formulations also converse formulations are
possible. For example if x* is given, the problem consists of
"selecting" the appropriate distribution N(x). The same func-
tionals (129) or (130) are maximized. But the maximizing
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functions will then be N(x), Ni(x), on which various constraints
can be imposed.

We will consider the maximization of the functional (129).
If N(x) is unbounded above, and c(x)> 0, the problem has no solu-
tion. Let

0 <N (x) < ;.

Then, the distribution:

N(x) = N is optimal for all x>x .

In order that the solution be meaningful we introduce additional
constraints on N(x), exactly as we did in the preceding chap-
ters.

We thus conclude the chapter which was devoted to BGC opti-
mization problems in whose models the ages, sizes, etc., of the
individuals must be taken into account. This is usually necessary
in optimization problems, because in the criterion function the
difference in costs is taken into account as a function of the
age or size of the individual caught. Of course, we only con-
sidered the simplest problems of this type. Undoubtedly, further
study of these problems will yield many new and interesting re-
sults.

CHAP 0 VII. CONTINUOUS YIELD COLLECTION MODELS

Until now the continuous yield collection process was mainly
considered as the limiting case of a discrete process (as h - 0).
From the very beginning despite the fact that the dynamics of the
controlled system were described by differential equations in
which time was continuous, we introduced the decisions as a dis-
crete process. Strictly speaking, we did not need differential
equations to describe the behavior of the system at all, we could /114
have worked much more easily with difference equations. However,
because of tradition we used differential equations, although,
for example, in the study of stationary processes,the differential
equations were replaced by difference equations. To a great ex-
tent this approach was determined by the methods which we used,
the method of dynamic programming, whichis much more conveniently
applied in the discrete case. But we must not forget about power-
ful optimization methods which were specifically developed for con-
tinuous systems (for example, the Pontryagin maximum principle).
In this chapter we will demonstrate the application of this prin-
ciple to our specific problems.
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1. Continuous Collection Model in a Homogeneous Population.

Before we apply the maximum principle, we must set up correct-
ly the model for the controlled system. Difficulties arise here,
in particular the question of checking the model. We will solve
this problem by a direct comparison of the results obtained from
the model and by analyzing a discrete model as h - 0. The dis-
crete model itself is very simple in structure, therefore, we
may expect that it is correct to some extent.

We will begin with a one-component BGC, a yield collection
process which was studied in great detail in Chapter II.

We denote by N(t) the population size, from which q(t) in-
dividuals are removed at the instant t. The individuals which
are removed participate neither in reproduction nor in competitive
relations, so that the fundamental equation which describes the
dynamics of the population size can be written in the form:

dN
S= - q + (N - q) [a - T (N - q)], (131)

with the natural constraint:

0 < q (t) - N (t). (132)

Here a is the natural growth coefficient, y is a coefficient which
takes into account the competition among individuals.

In the given case q(t) is an admissible control variable and it
characterizes the rate at which the yield is collected. If instead
of q we introduce the variable k, which is related to q by the
relation

q kN, 
(133)

constraint (132) can be rewritten in the form:

0k ( ) I, (134)
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and the meaning of the new control variable is analogous to that /115
introduced in Chapter II. However, for the time being we will not
make this substitution. The criterion function in this case is
written in the form:

G= q(t)dt+N(T). (135)
0

The term N(T) in (135) indicates, that the entire biomass is col-
lected at the last instant T. If we consider G as a new variable,
we can finally formulate the optimization problem of maximizing
the yield collected as follows: Find

G*= maxG(t)lt= T; (136)
o<qev

subject to the conditions:

dG
= (N -'q) {a - T (N - q)}

dN
72= - q + (N - q) {a - y (N - q)} (137)

G (0)= N (0) = No

In this formulation this problem becomes the so-called "open end
problem" to which we will apply the "maximum principle" (Pon-
tryagin, et al., 1961).

Often in problems of this type the yield function enters lin-
early, so that the fundamental equation has the form:

dN
d N(a- TN) - q (t) (138)

and we formulate the problem of finding

T

max q () dt. (139)
K0q<q 0
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While the model described by (131) is equivalent by construction
to the discrete model in Chapter II, model (138) is constructed
altogether differently. If we consider (138) and (139) as an
optimization problem, its solution is sufficiently simple:
q = q, even though it is difficult to interpret from the bio-
opt
logical point of view. Therefore, we proceed differently: we
introduce various constraints, and q(t) is sought taking into con-
sideration these constraints. Such approach which we used in
Sections 4, 5 of the preceeding chapter enables us to obtain solu-
tions which make better sense, but nevertheless a question which
remains open is why these models yield different results. To
answer this question we must analyze the way in which the models
are constructed, and clarify the areas to which each of them is
applicable.

2. Comparison of Two Types of Models /116

We will consider the difference analogue of the first model,
We will select as the time unit one step in the process and we
will normalize appropriately the coefficients a and y. Then at
the instant t. when the yield is collected

N + (t)= N-(tq) - 9 (i). (140)

If h is small, then with sufficient accuracy:

N- (ti+) = N+ (t) a.V+ (tj) - [iN (t,)2 .  (141)

Substituting (140) in (141), we obtain

N- (tj.) = N)- (t)) - q(t) ) - q (tL) - T [N () - q (t) P. (142)

Then, if the number of steps n)>l, and N-(ti+1) - N-(ti) is suf-

ficiently small, the solutions of equations (131) and (142) which
are considered on a sufficiently large time interval, differ, on
the average, by little. In this model the yield collection
procedure affects in an essential way also propagation and intra-
specific competition, since during the collection the individuals
which actively participate in these processes are removed. In
fact, it can be seen directly from (142) that the natural growth
is not proportional to N, but to N - q, i.e. the number of re-
maining individuals. The same can also be said about the term
which describes intraspecific competition.
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We now pass on to the second model. We have for the popula-
tion size at two successive instants of time (the yield is not
collected):

N (ti+) = N (ti) - aN (ti) - N2 (t). (143)

If we remove slowly from the system a part of the individuals at
the rate q(t), so that this has no effect on the propagation or
competition, then

N (tIse) = N (t,) + a.V (t() - TN 2 (4t) - q (ti). (144)

(138) is the differential analogue of (144). In fact the intro-
duction of such a control variable is equivalent to increasing mor-
tality in the population, without affecting essentially that part
of the population which participates actively in the reproduction
and competition processes.

The first model which is the limiting case of the discrete
model, can be appied to describe a situation when the intervals
between the collections are comparable in order of magnitude to
the mean life of a generation or with the reproductive age (we
can give as an example the yield collected in microbial coenoses
or in artificial culture apparatus, hay making, pond fishing, etc.).
On the other hand this model can be applied given any collection

rate, even if the biomass is removed almost completely. The non- /117
linearity,which is preserved in the transition from the discrete
variant to the continuous model,makes it possible to take also
into account such processes.

The second model is applicable when we make small but
frequent catches in a population whose size is very large. Here
the intervals between the catches must be much shorter than the
mean life of a generation or the reproductive age (for example,
fishing in large ocean or sea coenoses, slaughtering of cattle in
dairy herds, etc.). 'This model is also applicable in
other cases, with the condition that q(t) is small compared to the
total increment in the biomass. This implies immediately that
such a model can be used when the population is in the logarithmic
growth stage. This is easily verified.

The first model is a continuous approximation of a discrete
process, the second model is continuous by construction and the
assumptions on which it is based. It is interesting to note, that
models which are very similar to the first model are widely used
in economics to describe a production process, where a part of
the product is used for expanding production and the part which
makes up the return is completely removed from the system (as an
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example we give the Markovitz model, many such models can be found
in Gale's book, "Linear Economic Models") (1963).

Models of the second type are widely used to describe various
automatic control systems in which the question of the possible op-
timization criteria is analyzed in detail.

Here we touched on an important problem dealing with the
decision rules in a model which describes an "uncontrolled" system,
i.e., a population or a BGC in which no yield is collected. At
this point it is difficult to say anything about the advantages or
disadvantages of a particular method which would allow us to make a

choice immediately. We tend to favor the first model, since it
preserves the nonlinearity of the decision. This leads us to expect
"richer" solutions.

3. Solution of the Continuous Collection Problem

Let us return to problems (136), (137). We set up the Pont-

ryagin function

H= (*I+ tVo)(x [ - q) [a -T (.V - q) - (145)

where the equations for 0, 1 have the form

o 1

d-- =O;

dt, aH (146)
dt -  dV

To (T) = 1i: (T) = 0; J

which implies immediately that

S 1; 0, O. (147)

From the condition dH/dq = 0 and from (147) we have: /118

q(t = N (t) 2 - (148)

Since O<q(N, the optimal control-:wil:l have the form:
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Nv (t) - when iV (t) >
q (t) = (149)

0 when N(t) < -

Substituting the value q(t) found in the criterion function, and
assuming that q(t)> 0 almost everywhere on the interval [0,T], we
obtain

G*= N(0) + T.
4 (150)

Comparing (149), (150) with formulas (6) and (10), we see that
they coincide completely. Thus, the check confirms that we selec-
ted the correct model.

The equation which describes the change in the population size
during the optimal collection has the form:

dN + -V when N (f) > '

IN(a - yN) when. N(t)<-

Let N(0) o/2y. Integrating (151), we obtain:

N (t) (--- (1 - e-t) + N(O)e-t" (152)

We can easily see that for any t: N(t)> Thus we have proved
the continuous analogue of the proposition which was formulated
for the discrete case, namely that if at some stage in the pro-
cess the optimal control is different from zero, it will be dif-
ferent from zero in all successive stages.

When t-- 0 : IV(t)- M:3 _
When -~-4 2_ , so that for large t the process be-

comes stationary with a constant population size and the same con-

trol qm = a2/4y. If N (0-o+ . 5- - the entire process is sta-

tionary, starting with t = 0, so that N(t) - N(0) = 0. Here we
have some inconsistency with the discrete model, in which the
initial condition which ensures stationarity as h - 0,has the
form N + = o/2y. In fact, however, there is no contradiction,
since the trajectory which characterizes continuous collection
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consists of points whose ordinates are equal to the sizes of the

population attained in unit time, with the condition that no col-

lection takes place.. The initial sizes are determined by the

points which lie on the curve. /119

N' (t) (1 - e-) + N'(O)e-t, (153)

which is the continuous approximation of the discrete collection

process (the lower envelope of the "saw-tooth" plotted in Fig. 5,
with the condition that the number of "teeth" tends to infinity,
and their width tends to zero).

When we derived (131) we assumed that time is measured in
dimensionless units, so that the ordinary time T = th and all co-
efficients have been recomputed appropriately. Then, if a and y,
are coefficients referred to ordinary time, (131) can be written
in the form

h = (N - q) iah - Th (N - q)] - q. (154)

where qopt is determined as before by formula (149). The solu-

tion of (154) when q = gopt is:

S= (I - e Tih)+ N (0) el h.  (155)

As h - 0: N(T) - _/2Y = a/2y. But 7 = th, and in order that 7

be finite as h - 0, it is necessary that t - m, i.e., the number

of steps must tend to infinity.

Making this type of transformation, which brings us from di-
mensionless time to time measured in ordinary units, we obtain
the law for the change in the population size: N() = const,

which is independent of the initial condition (we assumed
above that N(0)~ a/2y and q(T)>O0), Above we have shown that

the transition process always takes place in a finite number of
steps. It is clear that as h - 0, this time interval shrinks to

a point, and the process is stationary from the very beginning.
The quantity N(T) = a/2y is the real population size, since the en-

tire increment above this quantity is collected.. In a continuous
collection process the population size.function actually recorded is

either the lower envelope of the "saw-tooth" or a curve which lies
somewhat higher, but'never the upper envelope. The control here
is made on the lower level, it must never be less than a/2y, if
this happens all intervention must cease until the population
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again reaches this critical size.

If the collection process is discrete with a sufficiently
large step during which the necessary measurements can be made,
the control can be made both on the lower and upper level. But
even here it is preferable to have the larger population size be-
fore the collection instant (upper level), since this instant is
determined from it. Even in the case when this instant occurred /120
astronomically, and the required upper bound has not yet been
reached, it is better to wait until it is .reached than to col-
lect a smaller yield.

Here we touched slightly on a very important problem, namely
the relation between the optimal control .and the information
needed to make it (the so-called "observability" of the object).
Unfortunately, this wide ranging and important problem is beyond
the scope of our book.

4. Generalization for an Arbitrary Number of Species

Suppose that the BGC studied consists of n species and is
described by the following system:

dN eiv1 T-- iNI ; i, = ,2, .., n.(_iA 
(156)

Analogously, as we did for a one-component BGC, we introduce the
control variables qi(i = 1, 2, . . ., n), the-number of indivi-
duals from the i-th species removed from the BGC at the instant
t. Introducing these control variables in the original system
(156),:we obtain:

dN1  n
i=1 (157)

The natural constraints on qi(t) are:

0 < q, (t) s<V1 N(t). (158)

We introduce the variables z.(t):

&l dN,= qq(t) + d- (159)
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or

z(t)= q(r)d + ± i(t). .(160)
0

If we denote by c. the unit cost per individual or per unit bio-
1

mass of the i-th species, then the requirement that the return be a

maximum at the instant t = T is written in the form:

G'*= max ciz(t) It=T; (161)

subject to the conditions (157), (159) or (160). It is assumed

that the c. are independent of time. If this relation exists, then /121

instead of the variables zi(t) we must introduce the variables

zg(t) = c (T) q, (r) d- + ci (t) .V (t)
0

and

]=1

We shall not do this in order not to make the problem more complex.
Let i = N - qi.. Then the problem can be written in the form:
Find:

T

G= max c[ q,(t)dt + t (T) ; (162)

with

n n

dO i S -2 2
=1 i=1

dN1 -ql; (163)

ij=1
0 < < N; i, = 1,2,..., n.
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The initial conditions for this system are given.

We will use the "maximum principle" to solve the problem.
We set up the Pontryagin function:

4 n

H= (ci , e - Ti il) - qiTP - (164)

The necessary conditions for the extremum H are:

aH aH
= - = ; i = 1, 2 ... n. (165)

We write down the equations for the i:

H .H_
dt al h i= 1, 2 n.

Taking into consideration (165), we will have

dti
dt = o; or i'= - ( r (O)e:; i = 1,2 .(166)

Since for "an open end problem" 0 (T) = (t) _ i,

V;(T)=O, so that Wi(t)~.O; i=1,2,...,n.

Then /122

7 i

H= ic, e- ~ 7 (167)I=1 j=i1

and

OH dH81t - (Ci Cfi ) i C,.

1=1
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Hence,

q, (t)=N,(- ,; i= 1,2 ... ,n; (168)

where the .i are determined by solving the system 
of linear al-

gebraic equations:

S(cm,; + c;,Ti) = ce8; , 2,... n (169)
j-1

If ti>O and Ni(t)> i', formula (168) determines the optimal con-

trols. If some i < O-and for some t, N (t), j , the optimal con-

trols .are determined from the formula:

N (t) -- i; when N 1 > i > O;

q (t) N,(t); when j<0; (170)

0; when Ni<Li-

Until now all our actions were determined by 
the "maximum

principle" formalism and we were not interested 
in the question of

interpreting the decision rules which were obtained formally.

5. Continuous Yield Collection in a "Predator-Prey" System

Let us return to the BGC model of the "predator-prey" type

which we already know well (for the time being of the Volterra

type). Then in (156) n = 2, yll = Y22 = 0, Y1 2  -21> 0,

el>0, E2<0. (For a comparison with the results in Chap. 
III,

we will assume that e2
> 0, and change accordingly the sign in the

equation for N 2 .) Solving (169) for this concrete type, we

obtain

S T (cl - c) =2 _ 2 (cl- Ce) ' (171)

If cl<c2 , then .1 >l0, (2<0, 
and according to (170), the optimal

controls. are:
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N2 - Z2 when N2> ;
- N; q s= 0 when N2< 2. (172)

Substituting (172) in (157), and taking into account the assump- /123
tions which were made, we obtain the equations for determining
the optimal trajectory

dN1 - dN, - e22s - At2 when NV > ;
- NI; di (173)

dt =-' d e 2- when Y, <?>

If c l <c 2 , then 11> 0 , 2< 0 and

N 1 i when N,> ,;
q= when N ; q- 2 ;  (174)

0 when Ni <;i

dN1  j ei + t - N when N > ,; dV _
dt e1N1  when Nl<, 1;, d (175)

What are the optimal yield collection policies in such a system?
If the "prey" are valued higher than the "predators" then as we can
see from (172), (173), the optimal state is one in which the num-ber of both "predators" and "prey" is held on the lowest level.
The yield which is collected are. almost all "prey," and when a cer-
tain level is exceeded,a certain number of "predators." If their
number is below this level, they are not removed from the BGC.Under the action of such a decision the system makes a transitioninto ever increasing cycles. An analogous picture was also ob-tained for the discrete process where the problem was solved using
the dynamic programming method (Chap. III, Sec. 2).

If the "predators" are valued higher, it follows from (174)
and (175) that when optimal control is applied, the number of
"predators" is held on the lowest possible level (the yieldcaught are almost all "predators"). "Prey" are either notcollected at all or their number is below a certain level, or only
a certain fraction is collected. Sooner or later their number
is equal to (N),==(8 1, )+1 , and does not change
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further, and the number of "prey" collected is (ql) = E1

Under the action of such control the system also makes 
a trans-

ition into ever increasing cycles, which, however, are bounded

above by the line N1  ( 1 + 1) 1. The point which is plotted

moving along this line tends to occupy a position with the smal-

lest possible coordinate N2 . The picture was analogous for the

discrete model. All that was said above is another proof that

for a "predator-prey" system described by the classical Volterra

model we cannot obtain an optimal stationary process (without 
im-

posing constraints which were selected in a certain 
way). As we

have already shown a stationary process occurs only when a 
finite

step of the process is selected uniquely, which, of course, is im-

possible when a continuous collection model is used. 
/124

If we introduce in the system sufficiently strong damping,

i.e., if we assume that y1 1 ' Y2 2 >0, we obtain a model 
which we

called the Kostitzin model. It follows immediately from (169) and

(170) that the optimal control is determined from formula (170),

where n = 2, and the quantities 51 and 2 are equal to:

?C1C1Y-22+ C2 (Ci - C2) E2-,1
c= cln1 -- (ci - c2) a (176)

2cxc2T1, + Ci (Cz - C2) 61i 2 .
4cicllTa,, - (Ci - c,)' Tl.

Here we assume as before that yl2= - Y2 1 > 0, 6> 0. Suppose that

%i and 2 are positive. Then we may expect that the controls

ql and q2 will be more interesting than in the 
preceding case.

But first of all it is necessary that cl c2. If c1 = c2 '

e1 > <0;

so that q2 = N 2 and 
d N 2 = - N 2 . This means that when the costs

dt

are equal, the greatest possible extermination of the 
"predators"

is optimal, a realistic result. The two extreme cases when cl = 0,

c2>0 or c2 = 0, C> 0 are not very 
interesting, since they

yield approximately the same results as the Volterra 
model with

c2 c1 and cl>C2.
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Suppose that cl, c2 >0, c1 4 c2 (if 212. - Y21 , we can ig -

nore the last constraint and replace it by c 1Y 1 2 # - c2Y21d)
Since we are considering a strongly damped system so that y12
is small compared to yl1 and Y22 we can assume that

4cLC2rTlT22 > (c1 - c2)2 T11 (177)

Below we shall consider the case when the reversed inequality holds.
If cl>c 2 , then 2<O0, andthe optimal control-Trthe "predators" is

removing them as much as possible from the BGC. Suppose now that
c 2 >cl. Then, when

(c - ci) e(12 > 2c1ee,2 (178)

02> and q2<N 2 , i.e., the control for the "predators" is no longer
their complete (or nearly compete) extermination. If

(c2 - e,) e, < 2ceF.s, (179)

then also 1>70 and, consequently, ql<N 1 . This means that such

cost ratios exist for which the optimal control lies within the
feasible region [0, N1] x . . . x [0, Nn]. The collection process

itself which is determined by the initial conditions becomes sta-
tionary after a certain time. This is easily shown by writing
out the equations which describe the optimal trajectory.

Let us return to inequality (178). We have shown above that /125
the system is stable when e1Y 1 2> e2Yll. On the boundary of the

stability region e1Y12 = E2Yll and it follows from (178) that

c2 <c l . This is impossible since the costs are always positive.

In order that (178) be satisfied the stability condition must be
satisfied with a "margin." This "margin" is easily calculated.
Let c 2 = kcl, where X>l and 1Y12 = 4ell, and where 4>1 deter-

mines the stability "margin." By substitution in (178) we obtain:

2It (180)
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On the other hand (179) implies that

x 2e< (181)

Thus, if the cost ratio X = '2 satisfies the following inequality
cI

earT s2es> c. > e28u (182)
EaTu c2 ei -2e-,?,t

the optimal controls lie within the feasible region (for some

tE[O,TI they can be zero). To make such a situation possible,
the parameters of the system must satisfy the inequality

(Ps2Ti2 + 281T2 2) (E1TI - 2ey,) > e1 2T* (183)

It is always satisfied if the system (156) has a stable node when
n = 2.

We note that (177) follows follows immediately from (178)
and (179). Therefore inequality (177) can be ignored since it is
not essential. If

(c2 - c1) eiT1 <2cee,,
(c2 - cx) (2718 > 2C1 TI ' (184)

c- c 2 ) 2 y2
1 2 and when c 2 >cl, the quantities 2 and

2 are positive. The analogues of inequalities (180 - 182) will

have the same form only their signs will be reversed. It can be
assumed that the reversed inequality (183) is satisfied in the
case when system (156) has oscillatory solutions. For the Volterra
model instead of inequality (183) and the reversed inequality, we
will have the identity: e E2 y

2
1 2 = Ec 2y

2
1 2 . The inequality

(182) and its analogue become the equality c2 = c.l

We will write the equations for the criterion function. In
a Volterra model:

dG - cz,e8 whenci> c?; P 6i when N > . 2.
cx whenc. P whenNi- I1.
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This confirms the earlier result that when c1 >c 2 the return con- /126

sists of the "prey" and "predators," which were collected in the
beginning of the process. Continuing :the collection can only de-
crease the return (dG/dt<O). If c 2 >cl, the return consists only

of "prey" which is collected in the yield collection process. The
return itself increases over time, since dG/dt>O.

In the Kostitzin model when the corresponding inequalities are
satisfied, 1l and 2 are positive and

dG
d= calr, + (c1 - c) Tl 2 1o2 + car,, . (185)

? + (CIL C2) 712dGIf inequality (177) is satisfied, then for any 41, 52: - O.

If 1he reversed inequality is satisfied, then dG/dt>O in the re-
gions determined by the inequalities (Fig. 37):

i(c6 - c() n - c (c - ci) 2 -,!, 4cCCy(71286

1(186)
2- -c) Toi V (C_ - c,)- 2 - 4cicTiri

Fig. 37. Range of admissible values for

51 and 2 (shaded)

Substituting in (186) the values of 1 and g2 from (185), and

solving these inequalities for c2/cl, we obtain additional bounds

on the costs (in addition to the reversed inequalities (182)). We
note these are more rigorous bounds than those generated by the
requirement that the 1 and 2 be positive. Thus, if the costs
and the parameters of the system satisfy the reversed inequality
(177), the solution makes sense (the return increases over time)
not for any positive 51 and 2' but only for those in
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region 0I or 0 II

We did not consider upper bounds on 1 and 2,' since these are

taken into account in the equations themselves. Since 1, 2

depend only on the parameters of the system and on the costs, when

these quantities are constant, the , 2 will also be constant.

Therefore, it suffices to choose Ni(0)) i in order that for any

t: N 2 (t)> i, i = 1,2. In general, for any n, not only for n = 2,

when the initial conditions are selected appropriately Ni(t)> i, /127

qi(t)>0, i = 1, . . . n. In fact, since i is independent of

time, i = Ni(t) - qi(t) = Ni(0) - qi ( 0 ) , and when i<Ni(0) is

chosen, for any t: Ni(t) >i, i = 1, 2, . . ., n. Taking this

into account (170) can be written in the form:

SN(t)-!i when 1;'O;

Vi N(t) when ,i<0. (187)

i= 1,2,...,n

with the condition Ni(0)>% .' If even for one Nk, Nk(0)< k,

then qk - 0 until for some t = t Nk(t*)> k. Then for t>t*,

Nk(t) > k'

6. Species Which Compete Among Themselves

Suppose that we have a BGC consisting of n competing species.

We assume for simplicity that i = yji i, j = 1, 2, . . ., n.

The BGC will be described by system (156) where all ei, Yi 0. The cp-

timal control vector qtql, q2 ' . .' . q n is determined from formu-

la (170), in which the i are found from the equations:

Y Tii(ci ci)i = cei; 1,2... n. (188)
j=1

If C i = c for all i,

2T-i i= 8i; i= 12,..., n; 143
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and Ni = 1 Ni, where N i is the stationary state in the BGC.

Since the N i must be positive (by definition of the problem the

sizes cannot be negative, and moreover the positiveness of N. to-
1

gether with the positiveness of the determinant of the matrix
if YijJ and its principal minors ensure their stability), all

i0O, and the optimum control is:

N when N .3 - N ;
Nt - 1 he ,

when *i<-. V. (189)
i= 1,2...,n.

This control makes it possible to collect in a given time the
maximum biomass of all species which make up the BGC. For each
individual species the control coincides with that obtained in
Chapter 4 for a one-component BGC, where also 1-

= 2N.
Summing all equations (156) in which ij = Yj, we ob- /128

tain an equation which describes the dynamics of the total biomass
of the BGC (we will denote it by M):

di = e,.V,.- ^ r riiNiNi.  (190)
j-1 i=1 j=1

We will find the point (Nt, . . ., N*) at which dM/dt attains a
maximum. Differentiating the right member of (190) with respect
to the N i and setting the derivatives equal to zero, we obtain

2iiN = e i=1, 2,..., n. (191)
i-1

But system (191) is the same as the system from which the i. are
determined, where c = c, so that i = N*. Since qi = N -i
(when qi Ni )' qi = N - N (when NiN*). This means that the
optimal yield collection policy will be as follows. (for the
maximum collected biomass criterion): the system is held in the
state for which the total increase in the biomass is a maximum and
the yield collected is the "incremental" biomass above this level

144



which is determined from (191).

The case when c 1 7 c2 is studied most conveniently when n = 2.
Then

2c1c2c1Tt, - (ci + C2) Cf2 TI2

4ccsn -,2 - (cl + c2)2 
T.

2cC262 11 - (c 4-+ C2) cxelTs (192)
4cic u1T- - (cl + c2)' T1 2

In order that 1 and (2 be positive, it is sufficient that the

numerators of the fractions in (192) have the same sign, since
when the numerators are positivethe denominator is also positive,
and vice versa. We will write the equation for the return:

c1 = cT,+ (C1 + c2) T12M12 + C2Tr 2laf (193)

It is easily seen that for any 1 and 52: dG/dt> 0.

The difference in the costs only displaces the level above
which the increment is removed as the yield. Suppose that c1 <c 2.
We will consider the extreme case cl = 0. Then i = E1/l12'

2 = 0. This means that in the second species the increment is

removed completely and that the number of individuals in the spe-
cies itself is held at a minimum; the first species is maintained
on a level which depends only on the natural growth coefficient
of the second species and on the coefficient which describes the
competition between them.

7. Optimal Yield Collection for a General Model /129

Suppose that the dynamics of the biogeocoenosis are described
by the system

dN.
d = fi (Ni, k)  (194)

1, j 1,2, .. n, k= 1,2, ... ,p,

where ak are certain parameters of the model which were selected in

such a way that the unit of time is a dimensionless quantity.
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System (194) with the control variables q (t) will be written
in the form:

dN
d' = f (Ni - qi, ak) - q (195)

ij= 1,2,... ,n, k = 1,2,.... ,p,

where the qi satisfy the conditions

0 < q, (f) < Ni (t). (196)

The problem of optimizing the total yield taking into account the
unit cost of the biomass of the i-th species c i will have the form:

Find

G'= max E czi(T)} (197)
0<Zi,<vi i=

with

d - cifi (,I, (L)
d=1

d = f (, ak)- qi (198)

,1= 1,2,..., n, k=1,2,..., p

and the initial condition

N, (0) = Nio; G (0) = 0.

Here T is the time when the collection process ends:

z1 (t) q, (r) dr - N (t);
0

(t) = N, (t) - q, (t).
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Using for the solution of the problem the Pontryagin 
/130

"maximum principle" we obtain at the point which we "suspect" to

be the extremum

H= Y cifi (, ak)" (199)
i=1

Sc a;i 0. (200)

Relations (200) define a system of equations which are used to find

the optimal values qi (i = 1, 2, ., n).

If

n

f.=.Nj.e- Y TNi), i=1,2 .. ,n,
i=1

relations (200) will coincide with system (169), from which the

optimal controls for the Volterra model of the BGC are found.

8. Maximum Yield Theorem

The total biomass of the biogeocoenosis is equal to

M = Ni.

If every unit of the biomass or individuals relating to the i-th

component of the BGC has a cost ci assigned to it (ci = const,

i = 1, 2, . . ., n) then the total "cost" of the entire BGC can

be written in the form

n

S(t) = cVN, (t). (201)
i=1

Differentiating (201) with respect to t, and using relations (194)

for the BGC which is not utilized, we obtain an equation which

describes the change in the "cost" of the BGC:
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M =
dt f(i= (202)

It is not difficult to find the point at which R/dt attains a
maximum. This point (N~3, (i = 1, 2, . . ., n) will be called

the optimal state of the biosystem.

Differentiating (202) with respect to the Nj and equating the
derivatives to zero, we obtain

Cd c = 0, = 1,2, ... n. (203)
i=l I

But system (203) when Ni is replaced by i is identical with /131
system (200), from which the ogtimal controls are found. Further,
since for the optimal values qi the function H takes on a maxi-
mum, then for quantities which are defined analogously, the "cost"

of the BGC also attains a maximum value. It follows from the
identity that

N;= = N - q,

and

q = N - N'.

This means that the state in which the-increment 'in the "cost" of
the BGC (the increment in the "weighted" biomass) is a maxim4m is
optimal. The yield which is removed is the entire "in-
cremental" biomass above the level determined by this state. If
the biomass or the number of individuals in some component of
the BGC is below this level, it must not be collected until- this
level is reached.

These results can be obtained directly from formula (199)
which defines H. If in this formula the i are replaced by the
Ni , then H = -, and it follows from the "maximum principle" that
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on the optimal trajectory H* = max H. Thus, the state of the
N(t)

BGC with the largest derivative of M with respect to time 
is the

optimal state. We have thus proved the "maximum yield theorem"

which can be formulated as follows:

when the yield is collected continuously, the optimal con-

trol in the biosystem will be such, that the biosystem arrives

in a state in which the derivative dM/dt is a maximum, and then

by collecting the yield, it is maintained in this 
state until the

end of the process.

CHAP. VIII. STABILITY OF BIOLOGICAL ASSOCIATIONS. /132

1. Stability and Variety in the Association

If we have a sufficiently "good" mathematical model of the

biological association (in the sense that it is adequately and

fully described), then the question of the stability of a real

association can be answered by a study of our model using the

usual methods of stability theory. The system will be stable if

its trajectory in phase space does not go beyond the boundaries of

a given region for certain finite perturbations of a sufficiently

wide spectrum. We note that the entire problem can also be con-

sidered from the point of view of reliability theory (more pre-

cisely from what is usually called "the reliability of dynamic

systems").

But in practice a study based on this approach is often not

possible, since setting up a good model is an extremely dif-

ficult problem. Therefore, it is very tempting to find a func-

tion (or functional), whose value when it is calculated for a par-

ticular association could be used to make a judgment about the

degree of its stability.

Among ecologists it is almost an axiom that the more 
com-

plex in structure the associations the more stable 
they are. This

leads to the idea of using as a measure of stability of the 
asso-

ciation information entropy (or some analogue). This idea was

formulated for the first time most clearly by Margalef (Margalef,

1956) who proposed to use the so-called "diversity" for charac-

terizing the association

n

D= - NA pilnp, (204)

where =; i N; N- is the number of individuals in the
149=
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i-th species in the association, and n is the number of species.

It is easily seen that the "diversity" differs from in-
formation entropy only by the factor N, the total size of the
association.

According to MacArthur (MacArthur, 1955), the stability of
the association can be characterized by the following quantity

S = - p (s)In p (s), (205)
!=1

where p(si) is the probability that energy will be transferred /133
1over a definite path s .

The larger the quantity S, the more stable the association.
When this measure is used, the stability of the association is
determined by the complexity of the structure of the trophic re-
lations. Clearly the elimination of a particular type of species
from the association and the destruction of the trophic relations
which connect it with the remaining species has a smaller ef-
fect on an association with a large value of S than on one with a
small value. The p(si) themselves, in turn, depend on the number
of species which make up the association.

It follows from everything that was said above, that the
stability and diversity of the association are interrelated, so
that a biosystem with greater diversity is more stable. This
means that the quantity D can be used as a stability measure of
the association.

Since it can be postulated that any system tends to a maxi-
mally stable state, the association must tend to a state with
maximum diversity. Observations have shown that biological as-
sociations are characterized by a tendency to attain maximum
sizes within the limits permitted by the external environment (for
example, the population tends to fill to a maximum the entire
habitat area). But it follows from (204) that for any internal
structure of the association, the maximum value of D is attained
for the greatest possible value of N, the total association size.
This is a sufficiently weighty reason in favor of choosing the
diversity D as a measure of stability.

2. Paradoxes Related to the Application of Various Ana-
logues of Information Entropy As A Measure of
Stability

What will be the most stable association if we use as the
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criterion the quantity D or S? In other words for what values

of N. and for which structure of the trophic connections 
does D

or Slattain a maximum?

Since pi=l, using the method of Lagrange multipliers, the

necessary conditions for the maximum can be written 
in the form

D' ,V(Inpi + 1)+ = O, i 1,2,..., n, (206)

where

il= i=1

Multiplying (206) by pi and summing, we obtain 
/134

1= N piln p - 1)= - D + N.
i=1

Substituting this expression in (206), we will have

lnpi= Z pi Inp, i 1,2,..., n. (207)
ji=

It is easily seen that this equality is satisfied only when

PI=* = 1= const, (208)

where D attains a maximum over the variables pi at this point.

And finally the diversity of the association is 
a maximum if:

a) the total association size N is a maximum 
for the

given conditions in the environment;

b) all species in the association are represented 
with

equal frequency. Since N stabilizes sooner or later, the 
associa-

tion must evolve to a state with pi = const for all species.

Thus, the most stable association is an association 
in which no
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hierarchy of species exists, and all species are represented in
equal proportions. But observations of real associations (in
particular the most easily isolated elementary components of the
biosphere, the biogeocoenosis) indicate something entirely dif-
ferent, namely that any association which existed for a suf-
ficiently long time (hence, which is also stable) has a sharply
pronounced hierarchial structure. Everything that was said above
leads to the idea that using the diversity as a measure of sta-
bility of the association is not fully justified.

Turning to the measure S introduced by MacArthur, we see that
it attains a maximum when p(sl) = p(s 2) = . . ., i.e., in a most

stable association the probability that any path over which energy
is transferred will be selected is the same, so that any trophic
connection is established with equal probability. Of course, such
a structure is not hierarchial. Moreover, since the selection of
any possible energy migration path is equiprobable, such system
will not have any definite structure. All this contradicts obser-
vations which were made on real natural associations, and there-
fore the measure S is also unsatisfactory.

We note, however, that in many laboratory (and not only lab-
oratory) associations, in the succession stage and during move-
ment to a climax, increased diversities are actually observed.
Apparently this measure characterizes to some extent the associa-
tion, further, in all probability, it can even characterize the
stability of the association, although not everywhere, i.e., only /135
in the early succession stages.

What is the reason for these paradoxes? Apparently it is the
formal application of the apparatus of information theory to sys-
tems to which it should not be applied. Just as Boltzman en-
tropy in statistical physics, also information entropy in informa-
tion theory makes only sense for sets consisting of weakly inter-
acting particles or some other types of objects. The introduction
of the entropy measure for such a set is fully justified (Khinchin,
1943). But as soon as we deal with systems whose elements strongly
interact among themselves, the entropy measure is no longer satis-
factory. And biogeocoenoses whose structure is mainly determined
not by the characteristics of the species itself but by the charac-
teristics of the interspecific relations, in which the competitive
relations manifest themselves most strongly near equilibrium, are
precisely systems with strong interactions.

From this point of view the applicability of the entropy mea-
sure at various succession stages is understandable. The point is
that in these stages far from equilibrium, the competition is still
weak, and the competitive pressures are small so that the biogeo-
coenosis can be considered as a system with weak interactions.
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3. Stability of a Homogeneous Population

We will consider a model of a homogeneous population in the
environment. This model can be interpreted as the description of
a population of one species in an association, consisting of
weakly connected populations (other interpretations are also pos-
sible). Usually such a model is described by the logistic equa-
tion.

In what sense can we talk here about stability? Evidently
only in the sense of the probability that the population will de-
generate during random variations in the environment, and in terms
of the natural growth and competitive ability coefficients. But
in such formulation the problem remains complex. Therefore, we
will simplify it, and justify the following probable statement.
If we consider the population as a system of independent particles
that subdividefor each of which the probability of death
is given, the probability that the population will degenerate as
a whole decreases exponentially as the number of individuals in-
creases. On the other hand in the steady state phase, when the'
number of individuals is greatest, the competition among them is
so keen and the behavior of the population as a whole is so deter-
mined, that very strong disturbances which affect the dynamic struc-
ture of the population are needed in order that'the population
degenerate. All this indicates that the logarithmic growth phase
sector is most dangerous from'the standpoint of degeneration when
the number of individuals in the population is sufficiently small.
Therefore, we will consider the model of a homogeneous population /136
in the form

dN
dt= (t) ,. (209)

What effect do random fluctuations in the population size
have on population growth? Suppose that these fluctuations are
described by the distribution cp(t) with mean zero and variance

a2 . Then instead of (209) we will have

dN a(i) X 1r (t (210)

(the mean fluctuation is proportional to the square root of the
population size).

Introducing the new variable -= 2-, we obtain from (210)
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dZ I
dt 2 9. (211)

Integrating, we have

t

= oe -() + ()et)-¢(t)dr , (212)

I t= oe It (213)
where -(t) = -2- (r)dr.

0

oe -(T) e - . (213)
0

The mean value of is equal to

-1t (214)
$=oe2

since, by hypothesis, (t) = 0 and 0  is the expected value of

the quantityrNO for the initial conditions which can be speci-

fied in terms of some distribution. For simplicity we will assume
that the dispersion 0 is zero, i.e., = o0. For the

variance a ( ) we obtain

-( (e't- 1). (215)

To obtain the expressions for the mean C and the variance we can
use the central limit theorem, assuming that the values of cp are
mutually independent at different instants of time.

If cp(t) is normally distributed, has also a normal distri-
bution with mean ,a and variance a The population

- (eat --- I).

1 2 2
size N = 2 has a X distribution with one degree of freedom /137

with mean

N = Noext + (ea - 1). (216)
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This distribution is skewed (to the left) and therefore
N<R with a high probability. This means that when the popula-
tion size fluctuates randomly, its true values will almost always
be less than its mean values. At the same time if a>0 (i.e.,
the population grows) the random fluctuations increase the mean
population size. This follows directly from (216).

Finally in a growing population (> 0), random fluctuations
in the population size increase on the average the stability of
the system (by increasing the mean population size), but they also
increase the probability that it will degenerate by decreasing the
statistical stability (reliability) of the system, since N <N.
Here there is no contradiction, because we are talking about two
different types of stability. In the first case we are dealing
with dynamic stability, and in the second case with the probability
of finding the system in a certain state. The inequality NKN
indicates that for small values of the mean population size, the
random fluctuations almost always lead to degeneracy.

Whateffect do random fluctuations in the natural growth co-
efficient have on the dynamics of the population size? It fol-
lows from (209) that

(t()d (217)
N () = Noeo

If a(T) is normally distributed with mean a and variance a2(a)
t

which are independent of time, a()d is also normally distri-

buted with mean at and variance a2(a)t (by the central limit theorem,
on the assumption that the values a are mutually independent at
different instants of time). Then the quantity N/N 0 has a log-

normal distribution with the same mean and variance, so that

f_ _ z- [ iN (218)

This function has a unique maximum when N' = NeA' *- This
implies immediately that if 3 <a 2 (), then as t - N - 0 and the

mode of the distribution for N shifts to the left, if
l>a2 (a), it shifts to the right. This means that when )<c 2 (a)
the probability that the system will degenerate over time in-
creases, tending in the limit to one; in the statistical sense
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the system is not stable. When >O 2(cr) and as t m, the

probability that it will. degenerate tends to zero, and in this /138
case the system is stable.

It is interesting to note that the fact that a population

size subject to random fluctuations in thegrowth coefficient

has a lognormal distribution implies that to preserve the

population and its growth it is not sufficient that the,averaged

coefficient a(t) be positive (i.e., that the integral nTdT

be greater than zero for any t), a condition which is sufficient

for ensuring growth in the deterministic model (209). It is also

necessary that the integrai t1' )d be positive. This means

that the population dynamics wnen there are random fluctuations in

the growth coefficient are determined not by its arithmetic mean

(as in the deterministic model), but by its geometric mean. But

since the geometric mean is always smaller than or equal to the

arithmetic mean, the constraints on the growth coefficient which en-

sures the increase in the population size will be more stringent in

a probabilistic model than in a deterministic model. Naturally, the

stability region which is obtained according to some criterion on

the basis of the deterministic model, will be wider than the

analogous region in the probabilistic model. From this follows

the practical recommendation: treat the stability results obtained

from deterministic models with caution, since evidently the values

are somewhat too high and the constraints formulated by these are

weaker than those in probabilistic models.

4. Extremum Properties of Certain Mean Characteristics
of Associations

We will consider a sufficiently general model of a biogeo-

coenosis

dN1  /
SN, e- TN), i= 1,2,...Nn. (219)

i/=1

If Yji 0O, we shall speak about a BGC (or an association)

consisting only of competing (or coexisting) species. If

Y = y.., yi = .0, we will speak about a generalized "predator-

pay" sys em, in which all species are pairwise connected by
trophic relations of the "predator-prey" type. When n = 2, we

obtain the classical Volterra system, consisting of two species,

one of which serves as food for the other. We will call the

matrix Yij the competition matrix of the association.
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The model of an association consisting of n species, is often /139
written in the form (D'Ancona, 1954).

dNi I n
d= A,.ei- 2acN) i= 1,2,..., n, (220)

with the claim that this form is more general than (219). However,
this is not the case,which can be shown easily. We will transform
in (219) the variables Ni = Pixi

.  Then (219) will be written in
the form

di= x i - I xixi), i= 1,2,...,n. (221)

Clearly, except for differences in notation, (221) will coincide
with (220). Thus, we cannot speak about greater generality of
one form or another, since they are simply equivalent, and there-
fore all results obtained for (221) will also hold when the
model is written in the form (220). The assumptions yij = yji
or, i = - Yji are by no means more rigorous than aij = 'ji or

a.. = -a.. the difference is that the measurement units for the

biomass of each species are selected differently.

Suppose we are given a BGC consisting of n competing species
of sizes N i.  Then yij = Yji >0. Of course, this is a great

simplification, in real associations the competitive interrela-
tions are far from symmetric. Nevertheless this assumption does
not have a great effect on the behavior of the system as a whole
--the qualitative picture is preserved. We will make the change
of variableSi 2VFi. Then (219) can be written in the form of

the gradient rise equations for some function:

d. - W i= 1,2,... n, (222)

where

-- = ... _ T (223)

2=1 i=1 =1 i=1 1i= /=1
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which can be verified directly. Then, if the coefficients ei

and yij do not depend explicitly on time,

nn

-= d >0. (224)
dt i 1 j=1

But this implies that the function W, which is computed along the
trajectory is an inreasing function, and if the BGC has a stable

stationary state N i, i = 1, 2, . . .. , n with finite values of

the quantities N*, W attains the maximum in this state. In addi- /140

tion to this also in the case when the system can have populations

which are infinite, it evolves in such a way that the function
W which is calculated for the given values of ei and Yij is an

increasing (or at least nondecreasing) function. By analogy with
population genetics,we will call W the mean adaptability function

of the association.

Returning to the old variables, we obtain

i1 i=1 =1

S N, si- ,N. (225)

The quantity V = iNi characterizes in fact the rate at which
i==1

the biomass of the association increases in the case when there is

no competition and when there are no limits on the resources. We
can say that the quantity V defines the greatest reproductive rate

of the association (since there are no restraints which check the

growth of all population sizes making up the association).
Taking into account everything that was said above, we will call

V the reproductive potential of the association. Then the first
formula in (225) can be rewritten in the form

n 17

W = V - 1 E ,Vi •.. (226)
i=1 =1
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Thus, an increase in W in the evolution of the association can be
interpreted as an attempt of the association to maximize its
reproductive potential (the termV)_-aAd to minimize the mean
effort on competition (the term r TA 1iiNi can be considered

as an averaging of the competitive ability coefficient Yij over

over all species in the association).

It is easily seen from the second formula in (225), that the
quantity dW/dt decreases as the association evolves, and vanishes
in the steady state. In its structure this quantity resembles
strongly the variance, and in fact it characterizes the species

diversity in the association in the degree necessary to ensure the
evolution of the association as a whole.

We will now consider a generalized system of the "predator-
prey" type, i.e., a model of an association in which ij = - yji

This means that the trophic relations between pairs of "predator-
prey" species are symmetric. We will make the following change

of variables i = in- where N* is the positive solution of the /141
N 1

system of equations

yijNj = ei, i= 1,2 ... , n.

S1-I

Then (219) can be written in the form

7 , i = 1,2...n, (227)

i=1

where

n

which can be verified directly. We calculate the total derivative

G with respect to time

d dG dli a aG (228)-= ,I = T T,
idi= in15i 9
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But since yij = - Yji, the quadratic form (228) is identically

equal to zero. Consequently, the function G is an integral of
system (227). The quantity G does not vary along any trajectory
of the system. In the variables Ni, we obtain

n n n

G=2 NilnN i-  N N- XlnNJ. (229)
1= 1 i=1 1

Since G is determined with an accuracy up to a constant, (229)
can be written in the form

G = S- M, (230)

where S==NInN i is a term which resembles in structure informa-
I-'

tion entropy, which we will call the "quasientropy" of the

association, and where M= Ni is the total biomass of the
association. Thus, for sufficiently large N., the function G
cannot remain constant when all Nj vary monotonically, and periodic
solutions must exist, a fact we already know from the qualitative
analysis of the "predator-prey" system. Since G = const, an
association of this type evolves in such a way,that when the total
biomass increases the diversity of the association which is charac-
terized by its "quasientropy" must also increase.

Finally, we will consider a BGC model of a general type, /142
when there are no constraints on the yij . Suppose that the BGC has
a nontrivial equilibrium position, so that all N )>0. Under
which conditions will this position be stable? We write down the
equations for the first approximation (xi = N i - NT). From (219)
we obtain

dx. n
d -- N ;xi, i= 1,2...n. (231)1=1

A necessary and sufficient condition that the equilibrium position
be stable is that the real parts of the eigenvalues of the matrix

.- NYijl be negative. But the eigenvalues vi of this matrix
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are expressed in terms of the eigenvalues Xi of the competition

matrix as follows:

vi = - Nii, i 1,2,... n.

Hence, a necessary and sufficient condition for the sta-
bility of the equilibrium position is that all eigenvalues of the
matrix 1JYij11 be positive. But then the quadratic form

dG dG dG (232)

must be positive-definite and dG/dt~0, and the equality will only
hold when dG/d~i = 0, i = 1,2, . . ., n, i.e., in equilibrium,

or when yij= -Yji but then dG/dt = 0 everywhere on the trajec-

tory.

Since near the steady state G>O, and dG/dt)0, by.
analogy with mechanics, the function H = - G can be called
the "energy" of the association. Then when the association
evolves to nontrivial equilibrium, its "energy" decreases mono-
tonically, and tends to its smallest possible value, or it does
not change at all, but then the system may have closed trajec-
tories.

dG dS dM
Since~ dt dI > 0  it follows that during the evolution

of the association the rate at which its diversity increases must
be at least as fast as the rate at which the total biomass M
increases, since ds  dAM If the total biomass of the associa-

dt dt '"

tion decreases, the diversity of the association may also decrease.

We not that this result is evidently also valid in the case
when some Nk = 0. But this is only an assumption which we have

not yet proved. In this case the corresponding eigenvalues

vk = 0, and to study stability we must study the equation for

higher order approximations.

dG
Since F,0, in the stable equilibrium state G= max G. /143

N.

This implies immediately that the function

L =G-G'= ' In "i - c(NV - .v)

161



can be considered as a Lyapunov function for the system of
equations which are the model of the BGC. In fact,
L<O, dL/dt O0, and L is continuous together with its partial
derivatives with respect to N i.

Finally the state of the association can be characterized by
its "energy" where the association is more stable the lower the
amount of energy. Unfortunately, to-calculate it we must know the
equilibrium position of the system. It is interesting that the
expression for the "energy" contains terms, which in structure are
very similar to the "diversity" formula for the association.

5. The Number of Species in the Association

A very interesting problem is the problem of determining from
the parameters of the model the number of species which may co-
exist in the association. In presenting this problem we will
mainly follow the work of Levins (Levins, 1968). We rewrite
model (219) in the form

_"-F Y~' Ki- Ni - aiNi) , , (233)

where K = - (we assume that y >0). The quantity K. can be

called the "capacity" of the environment for the i-th species.
The"capacity" is nothing else but the greatest population size
of the i-th species. In fact, if there is no competition among
the species (yij = 0 for i # j), then max N i = K.. It is assumed

that the association consists only of competing species, i.e.,
that all y ij>0 (and correspondingly, ~ij > 0). By definition

aii = 1. The equilibrium values of the species population sizes

in the association are determined from the solution of the sys-
tem

K= Ni + aiiVi, i= 1,2,...n. (234)
i#i

This state can be characterized by a discrete distribution f(Nj)

for the population sizes. Applying the averaging operation using
this distribution to both members of (234), we obtain
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-1 +(n-){+ (235)

Here K is the mean capacity for the association, R is the mean /144

number of individuals in the association, a is the mean value of

a quantity which characterizes the interspecific competition,
cov(Cij,NiNj ) is the covariance between the interspecific com-

petition characteristics and the size of the species.

Equation (235) is the basic equation which relates certain

average characteristics of the association to the number of species

in it. Unfortunately, we were not able to obtain a simple ex-

pression for the covariance. Therefore, we will make one simplify-

ing assumption, namely, that cov (aij,NkNj)N. This means that

either the coefficients uij or the quantity N. differ little from

their mean values for the entire association as a whole, or that

the values of N. do not depend much on interspecific com-

petition (a system of weakly interacting species). Then, from
(235) we obtain

K-Nn= 1 + (236)
cN

It is seen from this equation that when a increases, the number of

species in the association is reduced in the same way as when the

mean size of the association is increased. When the mean capacity
of the association increases, the possible number of species also

increases. At least one species will always exist in the associa-

tion.

If the covariance is different from zero, the number of

species will depend on the character of the competitive inter-

relations. For a negative correlation (the covariance is negative)
the number of species increases, for a positive correlation it

decreases.

When new species are formed in the association, what effect

do these have on the stability of the association as a whole?

When a new association is formed.as a result of random immigra-
tion, the aij can be considered to be independent random

variables, except that they may be correlated with the

a... During competition both these quantities will be positive; in31
relations of the "predator-prey" type they will have opposite

signs. To simplify the situation, we assume that the mean values
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of the aij are equal to zero. Then

A, = D,,- - (n - I) cov (aii, aii) 5-o,. (237)

Here Dn is the mean value of the determinant of the matrix

I !,I Dn = D i _ , where Di is the determinant obtained from
I, n-1 n-1 n-1

Dn by eliminating the i-th row and the i-th column and the

averaging takes place over all i, i.e., over all species in the
association.

It follows from (237), that the mean value of D n becomes

negative as n increases (if the covariance between aij and a..ji is

positive). But if during stability (as we have shown above) the
matrix .YijI and consequently also I1aijIl have positive eigenvalues,

D n must be positive. Then (237) gives an upper bound for the mean /145

number of species in the association as a function of the symmetry
of the interactions. When the aij and ..ji are negatively cor-

related such upper bound does not exist.

For each species the mean population size is equal to

Ni - -- (238)
Ni---. {D.-1 - (n - 1) QD,_2 - coy (Oc Di.)}. (238)

In the beginning the covariance is zero. During evolution the re-
moval must reduce the quantities a.., i.e., the sensitivity of
the species to competition. HoweveiJ the positive removal
rate will be greatest for those aij for which D 3 2 has the

13 n-2
largest value. Thus, removal will lead to negative correlations
between aij and aj., and facilitate in this way an increase in

the number of species in the association. Both the stability of
the system and the probability of incorporating a
new species will change.

The hierarchial structure of the association is determined
by the covariance of the coefficients a.. and a.. and its non-

homogeneity by their variances.

6. Artificial Closed Biosystems

It is known that entire systems of living organisms refer to
so-called open or flow systems (Shepelev, 1966). The material-
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energy base for the existence of living systems is the preservation

of a stationary (equilibrium) state resulting from a continuous

change and restoration of their chemical structure which is accom-

panied by losses and replenishments of internal energy reserves.

Therefore such systems can only function under the condition that

energy and substances arrive at the input to the system, and

products of the vital activity are removed at the output.

Ensuring the vital activity of man as an open system (when

life support systems are created for man in spaceship cabins) re-

quires creation of reserves of substances he needs (oxygen, water,

food) for the entire flight as well as the creation of devices for

the storage of these reserves, the collection and removal of

products of the organism's vital activity. All this is a serious

obstacle in planning lengthy interplanetary flights.

In principle the possibility exists of creating man life-

supportsystems which are potentially independent of weight and

volume characteristics and the length of the flight. These are so-

called closed-loop or closed systems. The principle for the ex-

istence of a closed biological system is based on the repeated use

of a relatively small initial amount of chemical elements in a

closed cycle in which the substances of the system itself are

converted. Here in a closed system the vital activity products

of man must be transformed through other living organisms into

a form acceptable to man (into food, oxygen and water).

At the present time the principles and various variants used /146

to construct life supportsystems on the basis of the biological

cycle of substances are described in the literature (Shepelev, 1965;
Gitel'zon, Terskov, 1965) where each stage in such a cycle util-

izes various groups of microorganisms, algae, higher plants, and

lower and higher animals. It is a characteristic feature of such

life support methods that the vital activity of man is ensured

not by creating means which exist independently of him, but by

including man himself as a component in the system.

Figure 38 shows the basic scheme for the trophic relations in

a closed biosystem (Shepelev, 1966).

Energy

I I Fig. 38. Basic scheme of the trophic
, . 0o relations (1-4) in a closed bio-

. 2 ! 5 system.
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In the energy sense the most important aspect of the cycle
is the introduction of energy into the system from external

sources, its transformation and accumulation in the form of or-

ganic compounds, which takes place on the first trophic level '
through plant photosynthesis. The second trophic level is oc-
cupied by plant-eating animals, which can serve as food for car-
nivorous animals ("predators" of first, second, etc., orders)
which make up the third and successive trophic levels depending
on the length of the food chain. We note that usually every
trophic level is simultaneously occupied by several competing
species.

Finally, the last stage in the food chain are various hetero-
trophic microorganisms which complete the process of destroying
the organic substances and convert them into inorganic compounds
used again by the plants in the next cycle in which the or-
ganic substances are synthesized and the energy is accumulated.

Since the substance and the energy transfer from one trophic
level to another takes place with considerable loss of energy,
the successively reduced areas of the rectangles in Fig. 38
denoting the different trophic levels illustrate this process.

It should be noted that the scheme for the closed cycle of
matter in such an artificial biological system is basically
similar to the matter cycle in the biosphere (a closed man life-
support system in a spacecraftcabin is a model for the earth's
biosphere). Therefore, it is worthwhile to consider common pro- /147
perties of the natural original which must be modeled under
spacecraft conditions--the earth's biosphere and its elementary
units the biogeocoenoses--from the standpoint of the possibility
or usefulness of reproducing these in the model. The modeling and
the calculation of closed biosystems can be carried out using the
"portrait"modeling approach in which the models used are real al-
most completely isolated biosystems which exist in nature--bio-
geocoenoses and various unions of these. But a complete copying
of the biogeocoenosis cannot be. successful, since the criteria for

natural associations and for artificially created associations may
be different. Evidently only if the main organization principles
of natural biosystems and their functional mechanisms are copied
and considered in the most general form.can we expect success.

CONCLUSION /148

In conclusion we would like to summarize briefly what was
done and point out what still needs to be done, without making a
particular effort but using the rules which were presented above.
In addition to this we would like to formulate a number of suf-
ficiently general problems, the solution of which promises to give
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interesting results. We note that in this book we used only

known methods, but we applied them to models which are not well

known, and in the process we confined ourselves to the simplest

cases without using,for all practical purposes, the capabilities

of contemporary electronic computer technology;

Like any sufficiently complex system (for example, economics

provides examples of such systems), the BGC belongs to a class of

systems which we now call "large systems." We note, however, that

almost all methods which are used when these systems are investi-

gated are not related to specific features of these systems 
reflect-

ing ths tremendous number of variables and parameters which describe

them. They can also be applied to problems of small dimension-

ality, and the larger dimensionality leads only to greater com-

plexity of the solution (what Bellmann called fittingly the "curse

of dimensionality"). Therefore, we restricted ourselves to

problems of small dimensionality, where at the expense of gener-

ality we gained in clarity.

On the other hand, even though the BGC is a system which con-

sists of hundreds and thousands of populations of various

species, each of which in turn is also a sufficiently complex

systemit can be characterized with a certain degree of ac-

curacy even though only roughly by one phase variable and two or

three parameters and its evolution over time can be described by

one differential equation. This was described in sufficient

detail in Chapter I. Of course, here we are immediately confronted

with the question of selecting properly this variable (or variables)

and of the degree of the correspondence between the model which

was set up and the real BGC and the correct definition and "mea-

surement" of the parameters which enter the model. Here two

approaches are possible. The first is to describe the
association as fully as possible: its species composition,

the population density, the biomass or the population

size, etc. But to determine the BGC structure, it is not enough

if it is described only at one instant of time, a sufficiently /149

complete dynamic description must be given,and the amount 
of in-

formation which must be stored increases sharply. The model

which is constructed from this data serves only as a more compact

record. Of course, it can also be used for other purposes

(for example, to solve optimization problems). Nevertheless, be-

cause of its excessive concreteness this model has too

narrow a range of application.

In the second approach when the model is constructed only

the most general laws are used, the model is "applied" to a con-

crete BGC by selecting the appropriate parameter values which

enter the model. Then, when we study a concrete BGC we already

know that we must "measure" and the selection of particular

characteristics for the study is entirely determined by.the model.
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The checking of the degree of correspondence of the model,
the determination of important variables and parameters is an inde-

pendent, very complex and at the same time interesting problem,
whose study is beyond the scope of our book.

We will give examples of certain problems which can be

solved bythe methods presented in the book.

1) The -control of "harmful" animals is one of the

problems of regulating the number of species which make up the
BGC and of optimizing its structure. The criterion used here is
usually the requirement that the number of individuals in the
"harmful" species be minimized with'constraints on the number of
individuals in the other species. Various types of control are
used. The most widely used means is the use of poisonous chemicals,
which exterminate not only individuals in the "harmful" species,
but also in the remaining species, of course, to a lesser extent if

some selectiveness is present. The action can be of short-dura-
tion (pulses) and continuous. If the BGC consists of n species
and the first species is "harmful" then we can select for the
criterion either

G1 S N l() dt,
0

or

G2 = aN, (T) P d(),

where a and B are positive constants. We mustfindthe control vector
which minimizes G 1 or G2 subject to constraints of the type

NN, N N, where N* N* are positive constants

which are given. Assuming that the mortality for individuals in
each species is proportional to the concentration C of the poi-
sonous chemicals, the control vector qql' " " .,n can be

represented in the form

q, Cle; q,, = tLzC; .... T- .

The control parameter in the given case is the concentration c. /150
For a pulse action we can use a discrete model or a continuous
model where the control is given in the form of a 6-function.
Where we act continuously we can use the methods which were pre-
sented in the last chapter. Since we have only one control
parameter to regulate the system consisting of n species, we can
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hardly expect great effectiveness and flexibility of this decision

rule.

More promising and richer in possibilities are biological

methods of "pest" control. The biological
control of the size ox the "harmful" species can be realized in

two ways: either by changing the trophic structure of the given

BGC by introducing into it a "predator" for which the

"pest" is a "prey" or one of its parasites, or by acting di-

rectly on the reproduction of this, species, for example, by in-

troducing into its population individuals with genetically

impaired fertility. Problems of the first type can

be formulated and solved immediately, using the methods presented

in this book. In this case we are dealing with the classical

"predator-prey" situation. The difference is that above we only

considered the yield collection process, the removal of indivi-

duals from the system, and the decision was always positive,

while here "predators" are added to the system so that the

decision becomes negative.

When it is regulated genetically individuals from the same

species are introduced into the population, but with a modified

chromosome apparatus, which introduces considerable disturbance

to the reproduction process of the "pests." This
method was developed for the first time by A. S. Serebrovsky

(1940), who proposed that translocations which can exist in the

homozygous state be used. Later it was also proposed to use in

practice individuals which were heterozygoUs in the recessive lethal

gene or sterile (in the so-called "Curasao method" sterile males

were introduced). To solve problems of this type models are

needed which take into account the genetic diversity of the in-

dividuals in the population of one species and different types

of relations between the sexes.

The formulations of the problems can be simplified consider-

ably if we assume that the process is stationary. In this case

we seek such constant or periodically repeated action which will

ensure the fastest reduction in the "pest" species-while the

entire BGC "does not deteriorate," i.e., we seek min d

(for a discrete model min [N1 (h) - N 1 (0)] with the constraints:

dN 2/dt> 0, dN3 /dt>0, . . ., dNn/dt 0 (for the discrete model:

N 2 (h)>N2(0), N3 (h) N3 (0), . .. , Nn(h)>Nn(0)). Having solved

such a problem we will find the rate of flow for the cor-

responding individuals in the BGC, for which the "pest" species

dies out in the shortest possible time.

It is clear that the possibilities of such decisions, which

change the structure itself, the character and the size of the re- /151

productive and competitive relations are much wider than those of
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decisions based on the direct annihilation of "harmful" indivi-
duals.

2) Another example of problems in which the decision is
negative and the process is the opposite of collecting the yield
is the establishment of a more advantageous equilibrium state by in-
creasing artificially the number of some species. For example, in
a "predator-prey" system the amount of yield collected can be sub-
stantially increased by the timely introduction of new individuals.

3) Optimal feed diet problems became classical
problems a long time ago in linear programming (Dantzig, 1966).
However, in these it is assumed that the whole feed is eaten,
without any preference, and the criterion function is usually
the cost of the feed. In natural biological systems, the "preda-
tor" is most often a polyphage which feeds on several "prey"
species with various degrees of preference. It is clear that when
the optimal feed diet is prepared for such an object (for example,
a fish pond) this fact must be taken into account and the appropri-
ate corrections must be introduced into the Volterra model, where
it is assumed that the rate at which the "predator" consumes the
"prey" is proportional to the number of encounters of the "predator"
with the "prey."

The experimental data of V. S. Ivlev (Ivlev, 1955) which were
worked out by V. S. Ten, have shown that in the case when the
"predator" can feed on several species of "prey" the Volterra
assumption about the feeding mechanism of the "predator" is only
valid when the total number of "prey" is very small. Starting from
a certain level,the "predator" displays a selective capacity
during the encounter with a particular "prey" species, so that
certain species become dominant in his diet. The percentage of
"prey" which was eaten from the total number encountered will be
called the "predator's strategy, and we will denote it by
kfk l , k 2 , . . ., kn]. The rate at which the "predator" consumes

every "prey" species v (vl, v2 , . . ., vn I depends essentially

both on the selected strategy k and on the sizes N 1 , . . ., N n

The polyphagy principle proposed by V. S. Ten states that the
"predator" selects a strategy k for which the functional

I= civ (ki,,vi): i, = 1,n

attains a maximum. The strategy may be called optimal. Here the
ci are constants which characterize the "value" of the i-th "prey"

species in the "predator's" diet.
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Suppose that the following assumptions are valid: 1) the
BGC is in a stationary state (Ni = const, i = 1, n), 2) the

"predator" when he goes hunting encounters a "prey" from the i-th /152

species with a certain frequency Xi , and eats only a part (ki)

of the number of individuals encountered in the time T,

3) the frequencies Xi are proportional to the sizes N i . If we

introduce the concept of the relative "cost" of the "prey!' from

the i-th species

Ci =

the quantities ci can be considered as preferential food charac-

teristics. If c. = ,j' the trophic relation of the "predator"

to "prey" from species i and j is the same, i.e., ki(X) = kj ().

The "predator" gives preference to "prey" with the largest value
c.

Thus, if the relative costs are arranged in a decreasing

sequence

C1 > C2> > .

the optimal strategy of the "predator" will be as follows:

1. If N1 = N2 =. . . = Nn = const, then if the total

concentration of the "prey" is sufficiently high, the "predator"

eats only the first species with the largest cost cl.

2. If N1 <N 2 <. . .<Nn, then in the case when

Ni._lNi<Ni+l, individuals from the first i species are eaten,

species i + 1, . . ., n are rejected.

3. If the relative concentrations of the "prey" are

constant, and their total absolute number increases, when the

number is small all species are consumed, and when the absolute

number increases all species are rejected successively except
the first, first the n-th species with the minimum relative costs

cn' then the (n - l)-th species, etc.

4. Since the BGC is a system consisting of hundreds

and thousands of elements which are related sufficiently closely,
evidently certain quantities exist which can fully characterize

the average behavior of the entire system. In statistical
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mechanics, for example, such quantities are the temperature, the
internal energy, etc. We talk about creating a certain statisti-
cal mechanics analogue of a system such as a BGC. In the first
approximation we can assume that the components of the BGC are
described by the system of equations of the Volterra model, where
the order of the system itself is sufficiently high. The dif-
ficulty is that in contrast to the equations of mechanics, the
general system of Volterra equations is not Hamiltonian.

5. In addition to the equations which describe the
dynamics of the biomass, the BGC model must include equations
which describe flows of inert matter and energy. The presence
of photosynthesis gives rise to intense gas exchange, and, in ad-
dition, also other processes in the BGC are accompanied by /153
various gas flows. Industry and the building of residential
quarters in the region of the given BGC shift the equilibrium
of the gas flows which were formerly in a steady-state. Thus,
the problem arises naturally of supplementing optimally the BGC
by plants with given constraints on the composition of the at-
mosphere in this region. The flows of various chemical sub-
stances in the soil, the determination of the characteristics
of the stationary concentration distributions for the given soil
profile are also very important in characterizing the BGC. The
introduction into this system of various chemical compounds
(fertilizer, radioactivity, etc.) can shift in various ways the
existing distribution. Here we have also a number of interest-
ing optimization problems.
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